Inflammation is a significant component of chronic neurodegenerative diseases. Cyclooxygenase-2 (COX-2) is expressed in activated microglial cells and appears to be an important source of prostaglandins during inflammatory conditions. To investigate the effect of curcumin on COX-2 gene expression in microglial cells, we treated lipopolysaccharide (LPS)-challenged BV2 microglial cells with various concentrations of curcumin. Curcumin significantly inhibited LPS-mediated induction of COX-2 expression in both mRNA and protein levels in a concentration-dependent manner. COX-2 enzyme activity was also inhibited in accordance with mRNA and protein levels. Furthermore, curcumin markedly inhibited LPS-induced nuclear factor kB (NF-kB) and activator protein 1 (AP-1) DNA bindings. These data suggest that curcumin suppresses LPS-induced COX-2 gene expression by inhibiting NF-k B and AP-1 DNA bindings in BV2 microglial cells.
In the present study, the underlying protective mechanism of melatonin on kainic acid (KA)-induced excitotoxicity was examined in the hippocampus of mice. KA, administered intracerebroventricularly (i.c.v.), induced marked neuronal cell death with concurrent microglial activation and subsequent induction of inducible nitric oxide synthase (iNOS) in the hippocampus. Histopathological analysis demonstrated that melatonin (10 mg/kg), administered 1 hr prior to KA, attenuated KA-induced death of pyramidal neurons in the CA3 region. Melatonin obviously suppressed KA-induced microglial activation and consequent iNOS expression that were determined by increased immunoreactivities of microglial marker OX-6 and iNOS, respectively. Increased phosphorylation of Akt in pyramidal neurons was observed as early as 2 hr after administration of melatonin. Further, melatonin resulted in increased expression of astroglial glial cell line-derived neurotrophic factor (GDNF), which started to appear approximately 6 hr after administration of melatonin. The results of the present study demonstrate that melatonin exerts its neuroprotective action against KA-induced excitotoxicity both through the activation of neuronal Akt and via the direct action on hippocampal neurons and through the increased expression of astroglial GDNF, which subsequently activates neuronal PI3K/Akt pathway. Therefore, the present study suggests that melatonin, pineal secretory product, is potentially useful in the treatment of acute brain pathologies associated with excitotoxic neuronal damage such as epilepsy, stroke, and traumatic brain injury.
Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. W e previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.
Microglia are the major inflammatory cells in the central nervous system and become activated in response to brain injuries such as ischemia, trauma, and neurodegenerative diseases including Alzheimer's disease (AD). Moreover, activated microglia are known to release a variety of proinflammatory cytokines and oxidants such as nitric oxide (NO). Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory effects that are completely distinct form its antimicrobial action. In this study, the inhibitory effects of minocycline on NO and prostaglandin E2 (PGE2) release was examined in lipopolysaccharides (LPS)-challenged BV2 murine microglial cells. Further, effects of minocycline on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were also determined. The results showed that minocycline significantly inhibited NO and PGE2 production and iNOS and COX-2 expression in BV2 microglial cells. These findings suggest that minocycline should be evaluated as potential therapeutic agent for various pathological conditions due to the excessive activation of microglia.
Wogonin (5,7-dihydroxy-8-methoxyflavone) has been reported to exhibit a variety of biological properties including anti-inflammatory and neuroprotective functions. In this study, biological activities of diverse synthetic wogonin derivatives have been evaluated in two experimental cell culture models. Inhibitory activities of wogonin derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells and on hydrogen peroxide (H2O2)-induced neuronal cell death in SH-SY5Y human neuroblastoma were examined. Wogonin derivatives such as WS2 and WS3 showed more potent suppressive activities on LPS-induced NO production and H2O2-induced cytotoxicity than wogonin itself. In addition, thiol substitution played a minor role in enhancing the activities of the derivatives. These findings may contribute to the development of novel anti-inflammatory and neuroprotective agents derived from wogonin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.