The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery, we found that the weight values, scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.