The stress produced by the coupling of reactive oxygen species (ROS) and endoplasmic reticulum (ER) has been explored extensively, but little is known regarding their roles in the early development of mammalian embryos. Here, we demonstrated that the early development of in vitro-produced (IVP) bovine embryos was governed by the cooperative action between ROS and ER stress. Compared with the tension produced by 5% O2, 20% O2 significantly decreased the blastocyst formation rate and cell survival, which was accompanied by increases in ROS and in levels of sXBP-1 transcript, which is an ER stress indicator. In addition, treatment with glutathione (GSH), a ROS scavenger, decreased ROS levels, which resulted in increased blastocyst formation and cell survival rates. Importantly, levels of sXBP-1 and ER stress-associated transcripts were reduced by GSH treatment in developing bovine embryos. Consistent with this observation, tauroursodeoxycholate (TUDCA), an ER stress inhibitor, improved blastocyst developmental rate, trophectoderm proportion, and cell survival. Moreover, ROS and sXBP-1 transcript levels were markedly decreased by supplementation with TUDCA, suggesting a possible mechanism governing the mutual regulation between ROS and ER stress. Interestingly, knockdown of XBP-1 transcripts resulted in both elevation of ROS and decrease of antioxidant transcripts, which ultimately reduced in vitro developmental competence of bovine embryos. Based on these results, in vitro developmental competence of IVP bovine embryos was highly dependent on the coupled response between oxidative and ER stresses. These results increase our understanding of the mechanism(s) governing early embryonic development and may improve strategies for the generation of IVP embryos with high developmental competence.
X-box binding protein 1 (XBP1) mRNA processing plays a crucial role in the unfolded protein response (UPR), which is activated in response to endoplasmic reticulum (ER) stress. Upon accumulation of the UPR-converted XBP1 mRNA splicing from an unspliced (u) XBP1 (inactive) isoform to the spliced (s) XBP1 (active) isoform, inositol-requiring enzyme 1 α (IRE1α) removes a 26-nucleotide intron from uXBP1 mRNA. Recent studies have reported the assessment of ER stress by examining the ratio of sXBP1 to uXBP1 mRNA (s/uXBP1 ratio) via densitometric analysis of PCR bands relative to increased levels of sXBP1 to uXBP1 using a housekeeping gene for normalization. However, this measurement is visualized by gel electrophoresis, making it very difficult to quantify differences between the two XBP1 bands and complicating data interpretation. Moreover, most commonly used housekeeping genes display an unacceptably high variable expression pattern of the s/uXBP1 ratio under different experimental conditions, such as various phases of development and different cell types, limiting their use as internal controls. For a more quantitative determination of XBP1 splicing activity, we measured the expression levels of total XBP1 (tXBP1: common region of s/uXBP1) and sXBP1 via real-time PCR using specific primer sets. We also designed universal real-time PCR primer sets capable of amplifying a portion of each u/s/tXBP1 mRNA that is highly conserved in eukaryotes, including humans, monkeys, cows, pigs, and mice. Therefore, we provide a more convenient and easily approachable quantitative real-time PCR method that can be used in various research fields to assess ER stress.
Parabens are widely used in personal care products due to their antimicrobial effects. Although the toxicity of parabens has been reported, little information is available on the toxicity of butylparaben (BP) on oocyte maturation. Therefore, we investigated the effects of various concentrations of BP (0 μM, 100 μM, 200 μM, 300 μM, 400 μM, and 500 μM) on the in vitro maturation of porcine oocytes. BP supplementation at a concentration greater than 300 μM significantly reduced the proportion of complete cumulus cell expansion and metaphase II oocytes compared to the control. The 300 μM BP significantly decreased fertilization, cleavage, and blastocyst formation rates with lower total cell numbers and a higher rate of apoptosis in blastocysts compared to the control. The BP-treated oocytes showed significantly higher reactive oxygen species (ROS) levels, and lower glutathione (GSH) levels than the control. BP significantly increased the aberrant mitochondrial distribution and decreased mitochondrial function compared to the control. BP-treated oocytes exhibited significantly higher percentage of γ-H2AX, annexin V-positive oocytes and expression of LC3 than the control. In conclusion, we demonstrated that BP impaired oocyte maturation and subsequent embryonic development, by inducing ROS generation and reducing GSH levels. Furthermore, BP disrupted mitochondrial function and triggered DNA damage, early apoptosis, and autophagy in oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.