No abstract
Datasets are essential to the development and evaluation of machine learning and artificial intelligence algorithms. As new tasks are addressed, new datasets are required. Training algorithms for human-aware navigation is an example of this need. Different factors make designing and gathering data for human-aware navigation datasets challenging. Firstly, the problem itself is subjective, different dataset contributors will very frequently disagree to some extent on their labels. Secondly, the number of variables to consider is undetermined culture-dependent. This paper presents SocNav1, a dataset for social navigation conventions. SocNav1 aims at evaluating the robots’ ability to assess the level of discomfort that their presence might generate among humans. The 9280 samples in SocNav1 seem to be enough for machine learning purposes given the relatively small size of the data structures describing the scenarios. Furthermore, SocNav1 is particularly well-suited to be used to benchmark non-Euclidean machine learning algorithms such as graph neural networks. This paper describes the proposed dataset and the method employed to gather the data. To provide a further understanding of the nature of the dataset, an analysis and validation of the collected data are also presented.
Education is evolving to prepare students for the current sociotechnical changes. An increasing effort to introduce programming and other STEM-related subjects into the core curriculum of primary and secondary education is taking place around the world. The use of robots stands out among STEM initiatives, since robots are proving to be an engaging tool for learning programming and other STEM-related contents. Block-based programming is the option chosen for most educational robotic platforms. However, many robotics kits include their own software tools, as well as their own set of programming blocks. LearnBlock, a new educational programming tool, is proposed here. Its major novelty is its loosely coupled software architecture which makes it, to the best of our knowledge, the first robot-agnostic educational tool. Robotagnosticism is provided not only in block code, but also in generated code, unifying the translation from blocks to the final programming language. The set of blocks can be easily extended implementing additional Python functions, without modifying the core code of the tool. Moreover, LearnBlock provides an integrated educational programming environment that facilitates a progressive transition from a visual to a generalpurpose programming language. To evaluate LearnBlock and demonstrate that it is platform-agnostic, several tests were conducted. Each of them consists of a program implementing a robot behaviour. The block code of each test can run on several educational robots without changes. INDEX TERMS Educational tool, learning programming, robot-agnostic, software architecture.
The Hough Transform (HT) is an effective and popular technique for detecting image features such as lines and curves. From its standard form, numerous variants have emerged with the objective, in many cases, of extending the kind of image features that could be detected. Particularly, corner and line segment detection using HT has been separately addressed by several approaches. To deal with the combined detection of both image features (corners and segments), this paper presents a new variant of the Hough Transform. The proposed method provides an accurate detection of segment endpoints, even if they do not correspond to intersection points between line segments. Segments are detected from their endpoints, producing not only a set of isolated segments but also a collection of polylines. This provides a direct representation of the polygonal contours of the image despite imperfections in the input data such as missing or noisy feature points. It is also shown how this proposal can be extended to detect predefined polygonal shapes. The paper describes in detail every stage of the proposed method and includes experimental results obtained from real images showing the benefits of the proposal in comparison with other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.