Recurrent gain on chromosome 3q26 encompassing the gene locus for the transcription factor SOX2 is a frequent event in human squamous cell carcinoma, including head and neck squamous cell carcinoma (HNSCC). Numerous studies demonstrated that SOX2 expression and function is related to distinct aspects of tumor cell pathophysiology. However, the underlying molecular mechanisms are not well understood, and the correlation between SOX2 expression and clinical outcome revealed conflicting data. Transcriptional profiling after silencing of SOX2 expression in a HNSCC cell line identified a set of up-regulated genes related to cell motility (e.g. VIM, FN1, CDH2). The inverse regulation of SOX2 and aforementioned genes was validated in 18 independent HNSCC cell lines from different anatomical sites. The inhibition of cell migration and invasion by SOX2 was confirmed by constant or conditional gene silencing and accelerated motility of HNSCC cells after SOX2 silencing was partially reverted by down-regulation of vimentin. In a retrospective study, SOX2 expression was determined by immunohistochemical staining on tissue microarrays containing primary tumor specimens of two independent HNSCC patient cohorts. Low SOX2 expression was found in 19.3% and 44.9% of primary tumor specimens, respectively. Univariate analysis demonstrated a statistically significant correlation between low SOX2 protein levels and reduced progression-free survival (Cohort I 51 vs. 16 months; Cohort II 33 vs. 12 months) and overall survival (Cohort I 150 vs. 37 months; Cohort II 33 vs. 16 months). Multivariate Cox proportional hazard model analysis confirmed that low SOX2 expression serves as an independent prognostic marker for HNSCC patients. We conclude that SOX2 inhibits tumor cell motility in HNSCC cells and that low SOX2 expression serves as a prognosticator to identify HNSCC patients at high risk for treatment failure.
To investigate the contribution of the glucocorticoid receptor (GR) in skin development and the mechanisms underlying this function, we have analyzed two mouse models in which GR has been functionally inactivated: the knockout GR(-/-) mice and the dimerization mutant GR(dim/dim) that mediates defective DNA binding-dependent transcription. Because GR null mice die perinatally, we evaluated skin architecture of late embryos by histological, immunohistochemical, and electron microscopy studies. Loss of function of GR resulted in incomplete epidermal stratification with dramatically abnormal differentiation of GR(-/-), but not GR(+/-) embryos, as demonstrated by the lack of loricrin, filaggrin, and involucrin markers. Skin sections of GR(-/-) embryos revealed edematous basal and lower spinous cells, and electron micrographs showed increased intercellular spaces between keratinocytes and reduced number of desmosomes. The absent terminal differentiation in GR(-/-) embryos correlated with an impaired activation of caspase-14, which is required for the processing of profilaggrin into filaggrin at late embryo stages. Accordingly, the skin barrier competence was severely compromised in GR(-/-) embryos. Cultured mouse primary keratinocytes from GR(-/-) mice formed colonies with cells of heterogeneous size and morphology that showed increased growth and apoptosis, indicating that GR regulates these processes in a cell-autonomous manner. The activity of ERK1/2 was constitutively augmented in GR(-/-) skin and mouse primary keratinocytes relative to wild type, which suggests that GR modulates skin homeostasis, at least partially, by antagonizing ERK function. Moreover, the epidermis of GR(+/dim) and GR(dim/dim) embryos appeared normal, thus suggesting that DNA-binding-independent actions of GR are sufficient to mediate epidermal and hair follicle development during embryogenesis.
We have previously shown that the glucocorticoid receptor (GR) is required for skin homeostasis and epidermal barrier competence. To understand the transcriptional program by which GR regulates skin development, we performed a microarray analysis using the skin of GR(-/-) and GR(+/+) mice of embryonic d 18.5 and identified 442 differentially expressed genes. Functional clustering demonstrated overrepresentation of genes involved in ectoderm/epidermis development. We found strong repression of genes encoding proteins associated with the later stages of epidermal differentiation, such as several small proline-rich proteins (Sprrs) and corneodesmosin (Cdsn). This, together with the up-regulation of genes induced earlier during epidermal development, including the epithelial-specific gene transcripts E74-like factor 5 (Elf5) and keratin 77 (Krt77), fits with the phenotype of defective epidermal differentiation observed in the GR(-/-) mice. We also found down-regulation of the antimicrobial peptide defensin β 1 (Defb1) and FK506-binding protein 51 (Fkbp51). Skin developmental expression profiling of these genes and studies in cultured keratinocytes from GR(-/-) and wild type embryos demonstrated that gene regulation occurred in a cell-autonomous manner. To investigate the consequences of GR loss in adult epidermis, we generated mice with inducible inactivation of GR restricted to keratinocytes (K14-cre-ER(T2)//GR(loxP/loxP) mice). K14-cre-ER(T2)//GR(loxP/loxP) mice featured thickened skin with increased keratinocyte proliferation and impaired differentiation. Whereas Krt77 and Elf5 expression remained unaffected by loss of GR in adult epidermis, Fkbp51, Sprr2d, and Defb1 were strongly repressed. Importantly, we have identified both Fkbp51 and Defb1 as direct transcriptional targets of GR, and we have shown that GR-mediated regulation of these genes occurs in both developing and adult epidermis. We conclude that both overlapping and differential GR targets are regulated in developing vs. adult skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.