A convergent
synthesis via the late-stage serine ligation of naturally
occurring calcium-dependent antibiotic CDA3a and its analogues has
been developed, which allowed us to readily synthesize the analogues
with the variation on the lipid tail. Some analogues were found to
show 100–500-fold higher antimicrobial activity than the natural
compound CDA3a against drug resistant bacteria. This study will enhance
our understanding of CDA3a and provide valuable antibacterial lead
candidates for further development.
Shigella flexneri 3a causes bacillary dysentery. Its O-antigen has the {2)-[α-d-Glcp-(1→3)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-[Ac→2]-α-l-Rhap-(1→3)-[Ac→6]≈40 % -β-d-GlcpNAc-(1→} ([(E)ABAc CAc D]) repeating unit, and the non-O-acetylated equivalent defines S. flexneri X. Propyl hepta-, octa-, and decasaccharides sharing the (E')A'BAc CD(E)A sequence, and their non-O-acetylated analogues were synthesized from a fully protected BAc CD(E)A allyl glycoside. The stepwise introduction of orthogonally protected mono- and disaccharide imidate donors was followed by a two-step deprotection process. Monoclonal antibody binding to twenty-six S. flexneri types 3a and X di- to decasaccharides was studied by an inhibition enzyme-linked immunosorbent assay (ELISA) and STD-NMR spectroscopy. Epitope mapping revealed that the 2C -acetate dominated the recognition by monoclonal IgG and IgM antibodies and that the BAc CD segment was essential for binding. The glucosyl side chain contributed to a lesser extent, albeit increasingly with the chain length. Moreover, tr-NOESY analysis also showed interaction but did not reveal any meaningful conformational change upon antibody binding.
Increased usage of daptomycin to treat infections caused by Gram-positive bacterial pathogens has resulted in emergence of resistant mutants. In a search for more effective daptomycin analogues through medicinal chemistry studies, we found that methylation at the nonproteinogenic amino acid kynurenine in daptomycin could result in significant enhancement of antibacterial activity. Termed "kynomycin," this new antibiotic exhibits higher antibacterial activity than daptomycin and is able to eradicate methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) strains, including daptomycin-resistant strains. The improved antimicrobial activity of kynomycin was demonstrated in in vitro time-killing assay, in vivo wax worm model, and different mouse infection models. The increased antibacterial activity, improved pharmacokinetics, and lower cytotoxicity of kynomycin, compared to daptomycin, showed the promise of the future design and development of next-generation daptomycin-based antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.