A long-standing paradox in the study of T cell antigen recognition is that of the high specificity–low affinity T cell receptor (TCR)–major histocompatibility complex peptide (MHCp) interaction. The existence of multivalent TCRs could resolve this paradox because they can simultaneously improve the avidity observed for monovalent interactions and allow for cooperative effects. We have studied the stoichiometry of the TCR by Blue Native–polyacrylamide gel electrophoresis and found that the TCR exists as a mixture of monovalent (αβγɛδɛζζ) and multivalent complexes with two or more ligand-binding TCRα/β subunits. The coexistence of monovalent and multivalent complexes was confirmed by electron microscopy after label fracture of intact T cells, thus ruling out any possible artifact caused by detergent solubilization. We found that although only the multivalent complexes become phosphorylated at low antigen doses, both multivalent and monovalent TCRs are phosphorylated at higher doses. Thus, the multivalent TCRs could be responsible for sensing low concentrations of antigen, whereas the monovalent TCRs could be responsible for dose-response effects at high concentrations, conditions in which the multivalent TCRs are saturated. Thus, besides resolving TCR stoichiometry, these data can explain how T cells respond to a wide range of MHCp concentrations while maintaining high sensitivity.
The Golgi apparatus is the assembly site for a number of complex enveloped viruses. Using high-preservation methods for electron microscopy, we have detected two previously unknown maturation steps in the morphogenesis of Bunyamwera virus in BHK-21 cells. The first maturation takes place inside the Golgi stack, where annular immature particles transform into dense, compact structures. Megalomicin, a drug that disrupts the trans side of the Golgi complex, reversibly blocks transformation, showing that a functional trans-Golgi is needed for maturation. The second structural change seems to take place during the egress of viral particles from cells, when a coat of round-shaped spikes becomes evident. A fourth viral assembly was detected in infected cells: rigid tubular structures assemble in the Golgi region early in infection and frequently connect with mitochondria. In Vero cells, the virus induces an early and spectacular fragmentation of intracellular membranes while productive infection progresses. Assembly occurs in fragmented Golgi stacks and generates tubular structures, as well as the three spherical viral forms. These results, together with our previous studies with nonrelated viruses, show that the Golgi complex contains key factors for the structural transformation of a number of enveloped viruses that assemble intracellularly.
Several complex enveloped viruses assemble in the membranes of the secretory pathway, such as the Golgi apparatus. Among them, bunyaviruses form immature viral particles that change their structure in a transGolgi-dependent manner. To identify key Golgi factors for viral structural maturation, we have purified and characterized the three viral forms assembled in infected cells, two intracellular intermediates and the extracellular mature virion. The first viral form is a pleomorphic structure with fully endo--N-acetylglucosaminidase H (Endo-H)-sensitive, nonsialylated glycoproteins. The second viral intermediate is a structure with hexagonal and pentagonal contours and partially Endo-H-resistant glycoproteins. Sialic acid is incorporated into the small glycoprotein of this second viral form. Growing the virus in glycosylation-deficient cells confirmed that acquisition of Endo-H resistance but not sialylation is critical for the trans-Golgi-dependent structural maturation and release of mature viruses. Conformational changes in viral glycoproteins triggered by changes in sugar composition would then induce the assembly of a compact viral particle of angular contours. These structures would be competent for the second maturation step, taking place during exit from cells, that originates fully infectious virions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.