Objective Dietary supplementation with polyunsaturated fatty acids (PUFAs) has been widely used for primary and secondary prevention of CVD in individuals at risk; however, the cardioprotective benefits of PUFAs remain controversial due to lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 PUFA, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-HETrE, inhibiting platelet activation and thrombosis. Approach and Results DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX−/−). Similarly, wild-type mice treated with DGLA were able to reduce thrombus growth (platelet and fibrin accumulation) following laser-induced injury of the arteriole of the cremaster muscle, but not 12-LOX−/− mice, supporting a 12-LOX requirement for mediating the inhibitory effects of DGLA on platelet-mediated thrombus formation. Platelet activation and thrombus formation were also suppressed when directly treated with 12(S)-HETrE. Importantly, two hemostatic models, tail bleeding and arteriole rupture of the cremaster muscle, showed no alteration in hemostasis following 12(S)-HETrE treatment. Finally, the mechanism for 12(S)-HETrE protection was shown to be mediated via a Gαs-linked GPCR pathway in human platelets. Conclusions This study provides the first direct evidence that an omega-6 PUFA, DGLA, inhibits injury-induced thrombosis through its 12-LOX oxylipin, 12(S)-HETrE, which strongly supports the potential cardioprotective benefits of DGLA supplementation through its regulation of platelet function. Furthermore, this is the first evidence of a 12-LOX oxylipin regulating platelet function in a Gαs-linked GPCR-dependent manner.
Key Points Platelet 12-LOX modulates FcγRIIa signaling and presents a viable therapeutic target in the prevention of immune-mediated thrombosis. This novel therapeutic approach is supported by pharmacologic inhibition and genetic ablation of 12-LOX in human and mouse platelets.
Summary Following initial platelet activation, arachidonic acid is metabolised by cyclooxygenase-1 and 12-lipoxygenase (12-LOX). While the role of 12-LOX in the platelet is not well defined, recent evidence suggests that it may be important for regulation of platelet activity and is agonist-specific in the manner in which it regulates platelet function. Using small molecule inhibitors selective for 12-LOX and 12-LOX-deficient mice, the role of 12-LOX in regulation of human platelet activation and thrombosis was investigated. Pharmacologically inhibiting 12-LOX resulted in attenuation of platelet aggregation, selective in hibition of dense versus alpha granule secretion, and inhibition of platelet adhesion under flow for PAR4 and collagen. Additionally, 12-LOX-deficient mice showed attenuated integrin activity to PAR4-AP and convulxin compared to wild-type mice. Finally, platelet activation by PARs was shown to be differentially dependent on COX-1 and 12-LOX with PAR1 relying on COX-1 oxidation of arachi donic acid while PAR4 being more dependent on 12-LOX for normal platelet function. These studies demonstrate an important role for 12-LOX in regulating platelet activation and thrombosis. Furthermore, the data presented here provide a basis for potentially targeting 12-LOX as a means to attenuate unwanted platelet activation and clot formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.