Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587 premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients. N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%, P<10−77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (P<0.001). DM-Tam was influenced by body mass index (P<0.001). Improved distant relapse-free survival (DRFS) was associated with decreasing DM-Tam/(Z)-endoxifen (P=0.036) and increasing CYP2D6 activity score (hazard ratio (HR)=0.62; 95% confidence interval (CI), 0.43–0.91; P=0.013). Low (<14 nM) compared with high (>35 nM) endoxifen concentrations were associated with shorter DRFS (univariate P=0.03; multivariate HR=1.94; 95% CI, 1.04–4.14; P=0.064). Our data indicate that endoxifen formation in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased CYP2D6 activity predict shorter DRFS.
g-Glutamyl transpeptidases (GGTs) are essential for hydrolysis of the tripeptide glutathione (g-glutamate-cysteine-glycine) and glutathione S-conjugates since they are the only enzymes known to cleave the amide bond linking the g-carboxylate of glutamate to cysteine. In Arabidopsis thaliana, four GGT genes have been identified based on homology with animal GGTs. They are designated GGT1 (At4g39640), GGT2 (At4g39650), GGT3 (At1g69820), and GGT4 (At4g29210). By analyzing the expression of each GGT in plants containing GGT:b-glucuronidase fusions, the temporal and spatial pattern of degradation of glutathione and its metabolites was established, revealing appreciable overlap among GGTs. GGT2 exhibited narrow temporal and spatial expression primarily in immature trichomes, developing seeds, and pollen. GGT1 and GGT3 were coexpressed in most organs/ tissues. Their expression was highest at sites of rapid growth including the rosette apex, floral stem apex, and seeds and might pinpoint locations where glutathione is delivered to sink tissues to supplement high demand for cysteine. In mature tissues, they were expressed only in vascular tissue. Knockout mutants of GGT2 and GGT4 showed no phenotype. The rosettes of GGT1 knockouts showed premature senescence after flowering. Knockouts of GGT3 showed reduced number of siliques and reduced seed yield. Knockouts were used to localize and assign catalytic activity to each GGT. In the standard GGT assay with g-glutamyl p-nitroanilide as substrate, GGT1 accounted for 80% to 99% of the activity in all tissues except seeds where GGT2 was 50% of the activity. Protoplasting experiments indicated that both GGT1 and GGT2 are localized extracellularly but have different physical or chemical associations.
During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3′ polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5′-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.
Estrogen-receptor positive breast cancer accounts for 75% of diagnosed breast cancers worldwide. There are currently two major options for adjuvant treatment: tamoxifen and aromatase inhibitors. Variability in metabolizing enzymes determines their pharmacokinetic profile, possibly affecting treatment response. Therefore, prediction of therapy outcome based on genotypes would enable a more personalized medicine approach, providing optimal therapy for each patient. In this review, the authors will discuss the current evidence on the most important metabolizing enzymes in endocrine therapy, with a special focus on CYP2D6 and its role in tamoxifen metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.