Because of its importance as a pollinator and its potential economic usefulness for the biodegradation of organic animal waste, the genetic and phenotypic diversity of the drone fly, Eristalis tenax L. (Diptera: Syrphidae), was studied in both wild and captive populations from southeastern Europe. Wild specimens from a natural protected habitat (with low human impact), field crop habitat (semisynanthropic condition), and intensive pig farming habitat (synanthropic condition) were compared with a laboratory colony reared on artificial media An integrative approach was applied based on allozyme loci, cytochrome c oxidase I mitochondrial DNA, wing traits (size and shape), and abdominal color patterns. Our results indicate that the fourth and eighth generations of the laboratory colony show a severe lack of genetic diversity compared with natural populations. Reduced genetic diversity in subsequent generations (F4 and F8) of the laboratory colony was found to be linked with phenotypic divergence. Loss of genetic variability associated with phenotypic differentiation in laboratory samples suggests a founder effect, followed by stochastic genetic processes and inbreeding. Hence, our results have implications for captive bred Eristalis flies, which have been used in crop pollination and biodegradation of organic waste under synanthropic conditions.
Characterizing functional trait variation and covariation, and its drivers, is critical to understand the response of species to changing environmental conditions. Evolutionary and environmental factors determine how traits vary among and within species at multiple scales. However, disentangling their relative contribution is challenging and a comprehensive trait–environment framework addressing such questions is missing in lichens. We investigated the variation in nine traits related to photosynthetic performance, water use and nutrient acquisition applying phylogenetic comparative analyses in lichen epiphytic communities on beech across Europe. These poikilohydric organisms offer a valuable model owing to their inherent limitations to buffer contrasting environmental conditions. Photobiont type and growth form captured differences in certain physiological traits whose variation was largely determined by evolutionary processes (i.e. phylogenetic history), although the intraspecific component was non-negligible. Seasonal temperature fluctuations also had an impact on trait variation, while nitrogen content depended on photobiont type rather than nitrogen deposition. The inconsistency of trait covariation among and within species prevented establishing major resource use strategies in lichens. However, we did identify a general pattern related to the water-use strategy. Thus, to robustly unveil lichen responses under different climatic scenarios, it is necessary to incorporate both among and within-species trait variation and covariation.
Assessing the response of biological communities to contrasting environmental conditions is crucial to predict the effects of global change drivers. The influence of multiple environmental factors may differ depending on the diversity facet considered, which emphasizes the need to simultaneously evaluate the functional (FD), phylogenetic (PD) and taxonomic (TD) diversity. To examine how these facets of biodiversity respond to environmental changes, we studied lichen epiphytic communities across 47 beech forest fragments from two biogeographic regions. We applied structural equation modelling to relate habitat fragmentation, climate and habitat quality with FD, PD and TD. We compared the community response to contrasting climatic conditions by analysing independently Atlantic and Mediterranean communities. We found different major drivers of biodiversity patterns across biogeographic regions. Habitat fragmentation performed the highest effect on lichen communities, with a reduction of FD, PD and TD at both regions. However, the influence of climate was stronger in the Atlantic region than in the Mediterranean region, where the effect of habitat quality was superior. The effect of the environmental predictors over PD and TD was both direct and indirect through the different components of FD, and their intensity and sign differed across regions. Changes in PD were not related to changes in TD. Synthesis. Our results evidenced that the major environmental drivers affecting epiphytic communities were geographically structured. These drivers modified the diversity of the epiphytic community directly but also indirectly through changes in FD, which emerged as a causal but not unique determinant of PD and TD. Our findings also showed the difficulty for inferring TD through PD. These results emphasize the essential role of FD predicting part of the response of lichen communities to global change drivers but also highlight the importance of considering multiple biodiversity facets to understand the effects of environmental change on community structure.
Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into ‘mainstream’ ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.