Millions of patients suffer yearly from bone fractures and disorders such as osteoporosis or cancer, which constitute the most common causes of severe long-term pain and physical disabilities. The intrinsic capacity of bone to repair the damaged bone allows normal healing of most small bone injuries. However, larger bone defects or more complex diseases require additional stimulation to fully heal. In this context, the traditional routes to address bone disorders present several associated drawbacks concerning their efficacy and cost-effectiveness. Thus, alternative therapies become necessary to overcome these limitations. In recent decades, bone tissue engineering has emerged as a promising interdisciplinary strategy to mimic environments specifically designed to facilitate bone tissue regeneration. Approaches developed to date aim at three essential factors: osteoconductive scaffolds, osteoinduction through growth factors, and cells with osteogenic capability. This review addresses the biological basis of bone and its remodeling process, providing an overview of the bone tissue engineering strategies developed to date and describing the mechanisms that underlie cell–biomaterial interactions.
BackgroundHemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE).Methods and designThis is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic range; 3) Number of INR determinations within the therapeutic range in the first six weeks of treatment.DiscussionTo date, there are no clinical trials comparing pharmacogenetic acenocoumarol dosing algorithm versus routine clinical practice in VTE. Implementation of this pharmacogenetic algorithm in the clinical practice routine could reduce side effects and improve patient safety.Trial registrationEudra CT. Identifier: 2009-016643-18.
We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was tested by a multivariate logistic regression, and a predictive model was created, with further validation in an independent sample. A total of 2070 hospitalized COVID-19 patients were finally included in the multivariable analysis. Age 61–70 years (p<0.001; OR: 7.69; 95%CI: 2.93 to 20.14), age 71–80 years (p<0.001; OR: 14.99; 95%CI: 5.88 to 38.22), age >80 years (p<0.001; OR: 36.78; 95%CI: 14.42 to 93.85), male gender (p<0.001; OR: 1.84; 95%CI: 1.31 to 2.58), D-dimer levels >2 ULN (p = 0.003; OR: 1.79; 95%CI: 1.22 to 2.62), and prolonged PT (p<0.001; OR: 2.18; 95%CI: 1.49 to 3.18) were independently associated with increased in-hospital mortality. A predictive model performed with these parameters showed an AUC of 0.81 in the development cohort (n = 1270) [sensitivity of 95.83%, specificity of 41.46%, negative predictive value of 98.01%, and positive predictive value of 24.85%]. These results were then validated in an independent data sample (n = 800). Our predictive model of in-hospital mortality of COVID-19 patients has been developed, calibrated and validated. The model (MRS-COVID) included age, male gender, and on-admission coagulopathy markers as positively correlated factors with fatal outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.