Highlights The response to nitrogen of 4 winter oat varieties in three field trials was analysed. A novel high-resolution method was developed to profile metabolite changes. Conditions that enhance yield do not necessarily result in higher nutritional value. Choice of variety is of equally high importance as the nitrogen levels applied.
Introduction Oats ( Avena sativa L.) are a whole grain cereal recognised for their health benefits and which are cultivated largely in temperate regions providing both a source of food for humans and animals, as well as being used in cosmetics and as a potential treatment for a number of diseases. Oats are known as being a cereal source high in dietary fibre (e.g. β-glucans), as well as being high in antioxidants, minerals and vitamins. Recently, oats have been gaining increased global attention due to their large number of beneficial health effects. Consumption of oats has been proven to lower blood LDL cholesterol levels and blood pressure, thus reducing the risk of heart disease, as well as reducing blood-sugar and insulin levels. Objectives Oats are seen as a low input cereal. Current agricultural guidelines on nitrogen application are believed to be suboptimal and only consider the effect of nitrogen on grain yield. It is important to understand the role of both variety and of crop management in determining nutritional quality of oats. In this study the response of yield, grain quality and grain metabolites to increasing nitrogen application to levels greater than current guidelines were investigated. Methods Four winter oat varieties (Mascani, Tardis, Balado and Gerald) were grown in a replicated nitrogen response trial consisting of a no added nitrogen control and four added nitrogen treatments between 50 and 200 kg N ha −1 in a randomised split-plot design. Grain yield, milling quality traits, β-glucan, total protein and oil content were assessed. The de-hulled oats (groats) were also subjected to a rapid Ultra High Performance Liquid Chromatography—Mass Spectrometry (UHPLC-MS) metabolomic screening approach. Results Application of nitrogen had a significant effect on grain yield but there was no significant difference between the response of the four varieties. Grain quality traits however displayed significant differences both between varieties and nitrogen application level. β-glucan content significantly increased with nitrogen application. The UHPLC-MS approach has provided a rapid, sub 15 min per sample, metabolite profiling method that is repeatable and appropriate for the screening of large numbers of cereal samples. The method captured a wide range of compounds, inclusive of primary metabolites such as the amino acids, organic acids, vitamins and lipids, as well as a number of key secondary metabolites, including the avenanthramides, caffeic acid, and sinapic acid and its derivatives and was able to identify distinct metabolic phenotypes for the varieties studied. Amino acid metabolism was massively upregulated by nitrogen supplementation as were total protein levels, whilst the levels of organic acids were decreased, likely due to them acting as a carbon skeleton source. Several TCA cycle intermediates were also impacted, potentially indic...
A barrier to the adoption of genomic prediction in small breeding programs is the initial cost of genotyping material. Although decreasing, marker costs are usually higher than field trial costs. In this study we demonstrate the utility of stratifying a narrowbase biparental oat population genotyped with a modest number of markers to employ genomic prediction at early and later generations. We also show that early generation genotyping data can reduce the number of lines for later phenotyping based on selections of siblings to progress. Using sets of small families selected at an early generation could enable the use of genomic prediction for adaptation to multiple target environments at an early stage in the breeding program. In addition, we demonstrate that mixed marker data can be effectively integrated to combine cheap dominant marker data (including legacy data) with more expensive but higher density codominant marker data in order to make within generation and between lineage predictions based on genotypic information. Taken together, our results indicate that small programs can test and initiate genomic predictions using sets of stratified, narrow-base populations and incorporating low density legacy genotyping data. This can then be scaled to include higher density markers and a broadened population base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.