A multiproxy study of sediments cores from Zoñar Lake (37º29'00''N, 4º41'22'' W, 300 m a.s.l.) supported by 11 14 C AMS dates provides the first high-resolution centennial-scale reconstruction of past humidity changes in southern Spain during the last 4000 years. Arid periods occurred prior to 2.9 cal. kyr BP and during 1.3-0.6 cal. kyr BP (Medieval Climate Anomaly). The most humid period occurred during 2.6-1.6 cal. kyr BP encompassing the late Iron Age-Iberian and Roman epochs. Two humid periods of lower intensity occurred between 0.8-0.6 cal kyr BP (1200-1400 AD) and about 400 cal. yr BP (around 1600 AD) coinciding with the onset of the Little Ice Age. Humid conditions are synchronous with a decline in solar output and seem to correspond to atmospheric patterns similar to negative NAO phases. Arid conditions show better correlation with northern Africa climate evolution suggesting a possible link to subtropical dynamics. The geographic location of Zoñar Lake and the robust chronology provides an opportunity to improve our understanding of the climate evolution in mid latitudes during the Late Holocene and to evaluate subtropical and high latitude factors in Mediterranean climate evolution.
The multi-proxy analysis of sediment cores recovered in karstic Lake Estanya (42°02' N, 0°32' E; 670 m a. s. l., NE Spain), located in the transitional area between the humid Pyrenees and the semi-arid Central Ebro Basin, provides the first high-resolution, continuous sedimentary record in the region, extending back the last 21 000 years. The integration of sedimentary facies, elemental and isotopical geochemistry and biogenic silica, together with a robust age model based on 17 AMS radiocarbon dates, enables precise reconstruction of the main hydrological and environmental changes in the region during the last deglaciation. Arid conditions, represented by shallow lake levels, predominantly saline waters and reduced organic productivity occurred throughout the Last Glacial Maximum (21-18 cal kyrs BP) and the late glacial, reaching their maximum intensity during the period 18-14.5 cal kyrs BP (including Heinrich event 1) and the Younger Dryas (12.9-11.6 cal kyrs BP). Less saline conditions characterized the 14.5-12.6 cal kyrs BP period, suggesting higher effective moisture during the Bölling/Allerød. The onset of more humid conditions started at 9.4 cal kyrs, indicating a delayed hydrological response to the onset of the Holocene which is also documented in several sites of the Mediterranean Basin. Higher, although fluctuating, Holocene lake levels were punctuated by a mid Holocene arid period between 4.8 and 4.0 cal kyrs BP. A major lake-level rise occurred at 1.2 cal kyrs BP, conducive to the establishment of conditions similar to the present and interrupted by a last major water level drop, occurring around 800 cal yrs BP, which coincides with the Medieval Climate Anomaly. The main hydrological stages in Lake Estanya are in phase with most Western Mediterranean and North Atlantic continental and marine records, but our results also show similarities with other Iberian and northern African reconstructions, emphasizing peculiarities of palaeohydrological evolution of the Iberian Peninsula during the last deglaciation.
Abstract. A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.
• Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof. • If we do not receive your corrections within 48 hours, we will send you a reminder. Please note Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.