SUMMARY The clinical presentation of brucellosis in humans is variable and unspecific, and thus, laboratory corroboration of the diagnosis is essential for the patient’s proper treatment. The diagnosis of brucellar infections can be made by culture, serological tests, and nucleic acid amplification assays. Modern automated blood culture systems enable detection of acute cases of brucellosis within the routine 5- to 7-day incubation protocol employed in clinical microbiology laboratories, although a longer incubation and performance of blind subcultures may be needed for protracted cases. Serological tests, though they lack specificity and provide results that may be difficult to interpret in individuals repeatedly exposed to Brucella organisms, nevertheless remain a diagnostic cornerstone in resource-poor countries. Nucleic acid amplification assays combine exquisite sensitivity, specificity, and safety and enable rapid diagnosis of the disease. However, long-term persistence of positive molecular test results in patients that have apparently fully recovered is common and has unclear clinical significance and therapeutic implications. Therefore, as long as there are no sufficiently validated commercial tests or studies that demonstrate an adequate interlaboratory reproducibility of the different homemade PCR assays, cultures and serological methods will remain the primary tools for the diagnosis and posttherapeutic follow-up of human brucellosis.
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.Brucella, one of the world's major zoonotic pathogens, is responsible for enormous economic losses, as well as considerable human disease in areas of endemicity (7). The detection of Brucella DNA by real-time PCR (RT-PCR) in serum samples simplifies the technique and shortens the turnaround time compared with that for conventional PCR techniques. While much attention has been directed toward minimizing falsepositive reactions resulting from specimen contamination or amplicon carryover, relatively little attention has been given to the causes of false-negative PCR results.Our group has recently developed a LightCycler-based RT-PCR assay for serum samples for the diagnosis of human brucellosis; this test is more sensitive than blood cultures and more specific than the serologic tests commonly used (8, 10). We chose boiling as the DNA preparation method for the diagnosis of brucellosis because the technique is simple, is reproducible, can be performed rapidly, and is effective with other clinical samples, such as urine and cerebrospinal fluid (4, 9), and because no sophisticated equipment is necessary. The most important reason, however, is because the number of circulating bacterial cells in serum samples from patients with brucellosis is probably very small, and moreover, the nucleic acids from the pathogen are likely released into the circulation as breakdown products during bacteremia (11). Although AlSoud and colleagues (1, 2) did not recommend the use of this method, De Medici et al. (6) selected boiling as their preferred extraction method for the detection of Salm...
A single-step PCR assay with genus-specific primers for the amplification of a 223-bp region of the sequence encoding a 31-kDa immunogenetic Brucella abortus protein (BCSP31) was used for the rapid diagnosis of human brucellosis. We examined peripheral blood from 47 patients, with a total of 50 cases of brucellosis, and a group of 60 control subjects, composed of patients with febrile syndromes of several etiologies other than brucellosis, asymptomatic subjects seropositive for Brucella antibodies, and healthy subjects. Diagnosis of brucellosis was established in 35 cases (70%) by isolation of Brucella in blood culture and in the other 15 cases (30%) by clinical and serological means. The sensitivity of our PCR assay was 100%, since it correctly identified all 50 cases of brucellosis, regardless of the duration of the disease, the positivity of the blood culture, or the presence of focal forms. The specificity of the test was 98.3%, and the only false-positive result was for a patient who had had brucellosis 2 months before and possibly had a self-limited relapse. In those patients who relapsed, the results of our PCR assay were positive for both the initial infection and the relapse, becoming negative once the relapse treatment was completed and remaining negative in the follow-up tests at 2, 4, and 6 months. In conclusion, these results suggest that the PCR assay is rapid and easy to perform and highly sensitive and specific, and it may therefore be considered a useful tool for diagnosis of human brucellosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.