Minimum distance diagrams are a way to encode the diameter and routing
information of multi-loop networks. For the widely studied case of double-loop
networks, it is known that each network has at most two such diagrams and that
they have a very definite form "L-shape''.
In contrast, in this paper we show that there are triple-loop networks with
an arbitrarily big number of associated minimum distance diagrams. For doing
this, we build-up on the relations between minimum distance diagrams and
monomial ideals.Comment: 17 pages, 8 figure
We are interested in the maximum possible number of facets that Dirichlet stereohedra for three-dimensional crystallographic groups can have. In two previous papers, D. Bochiş and the second author studied the problem for noncubic groups. This paper deals with "full" cubic groups, while "quarter" cubic groups are left for a subsequent paper. Here, "full" and "quarter" refers to the recent classification of three-dimensional crystallographic groups by Conway, Delgado-Friedrichs, Huson and Thurston. This paper's main result is that Dirichlet stereohedra for any of the 27 full groups cannot have more than 25 facets. We also find stereohedra with 17 facets for one of these groups.
In this paper we finish the intensive study of three-dimensional Dirichlet stereohedra started by F. Santos and D. Bochiş, who showed that they cannot have more than 80 facets, except perhaps for crystallographic space groups in the cubic system. Taking advantage of the recent, simpler classification of three-dimensional crystallographic groups by Conway, Delgado-Friedrichs, Huson and Thurston, in a previous paper we proved that Dirichlet stereohedra for any of the 27 "full" cubic groups cannot have more than 25 facets. Here we study the remaining "quarter" cubic groups. With a computer-assisted method, our main result is that Dirichlet stereohedra for the 8 quarter groups, hence for all three-dimensional crystallographic groups, cannot have more than 92 facets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.