Rationale: The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood.
Objective: In this study we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish.
Methods and Results: We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant-negative, or constitutively active forms of rhoaa in ECs, and a pharmacologic inhibitor of ROCK1/2 to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis.
Conclusions: Our results indicate that either too much or too little RHOA activity leads to vascular dysfunction in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.