Summary1. The subdiscipline of 'community phylogenetics' is rapidly growing and influencing thinking regarding community assembly. In particular, phylogenetic dispersion of co-occurring species within a community is commonly used as a proxy to identify which community assembly processes may have structured a particular community: phylogenetic clustering as a proxy for abiotic assembly, that is habitat filtering, and phylogenetic overdispersion as a proxy for biotic assembly, notably competition. 2. We challenge this approach by highlighting (typically) implicit assumptions that are, in reality, only weakly supported, including (i) phylogenetic dispersion reflects trait dispersion; (ii) a given ecological function can be performed only by a single trait state or combination of trait states; (iii) trait similarity causes enhanced competition; (iv) competition causes species exclusion; (v) communities are at equilibrium with processes of assembly having been completed; (vi) assembly through habitat filtering decreases in importance if assembly through competition increases, such that the relative balance of the two can be thus quantified by a single parameter; and (vii) observed phylogenetic dispersion is driven predominantly by local and present-day processes. 3. Moreover, technical sophistication of the phylogenetic-patterns-as-proxy approach trades off against sophistication in alternative, potentially more pertinent approaches to directly observe or manipulate assembly processes. 4. Despite concerns about using phylogenetic dispersion as a proxy for community assembly processes, we suggest there are underappreciated benefits of quantifying the phylogenetic structure of communities, including (i) understanding how coexistence leads to the macroevolutionary diversification of habitat lineage-pools (i.e. phylogenetic-patterns-as-result approach); and (ii) understanding the macroevolutionary contingency of habitat lineage-pools and how it affects present-day species coexistence in local communities (i.e. phylogeneticpatterns-as-cause approach). 5. We conclude that phylogenetic patterns may be little useful as proxy of community assembly. However, such patterns can prove useful to identify and test novel hypotheses on (i) how local coexistence may control macroevolution of the habitat lineage-pool, for example through competition among close relatives triggering displacement and diversification of characters, and (ii) how macroevolution within the habitat lineage-pool may control local coexistence of related species, for example through origin of close relatives that can potentially enter in competition.
Functional trait differences among species are increasingly used to infer the effects of biotic and abiotic processes on species coexistence. Commonly, the trait diversity observed within communities is compared to patterns simulated in randomly generated communities based on sampling within a region. The resulting patterns of trait convergence and divergence are assumed to reveal abiotic and biotic processes, respectively. However, biotic processes such as competition can produce both trait divergence and convergence, through either excluding similar species (niche differences, divergence) or excluding dissimilar species (weaker competitor exclusion, convergence). Hence, separating biotic and abiotic processes that can produce identical patterns of trait diversity, or even patterns that neutralize each other, is not feasible with previous methods. We propose an operational framework in which the functional trait dissimilarity within communities (FDcomm) is compared to the corresponding trait dissimilarity expected from the species pool (i.e., functional species pool diversity, FDpool). FDpool includes the set of potential species for a site delimited by the operating environmental and dispersal limitation filters. By applying these filters, the resulting pattern of trait diversity is consistent with biotic processes, i.e., trait divergence (FDcomm > FDpool) indicates niche differentiation, while trait convergence (FDcomm < FDpool) indicates weaker competitor exclusion. To illustrate this framework, with its potential application and constraints, we analyzed both simulated and field data. The functional species pool framework more consistently detected the simulated trait diversity patterns than previous approaches. In the field, using data from plant communities of typical Northern European habitats in Estonia, we found that both niche-based and weaker competitor exclusion influenced community assembly, depending on the traits and community considered. In both simulated and field data, we demonstrated that only by estimating the species pool of a site is it possible to differentiate the patterns of trait dissimilarity produced by operating biotic processes. The framework, which can be applied with both functional and phylogenetic diversity, enables a reinterpretation of community assembly processes. Solving the challenge of defining an appropriate reference species pool for a site can provide a better understanding of community assembly.
SummaryAlthough experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass.We examined relationships among AMF richness, above-and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes.In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below-than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass.Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.
Alien species can be a major threat to ecological communities, but we do not know why some community types allow the entry of many more alien species than do others. Here, for the first time, we suggest that evolutionary diversity inherent to the constituent species of a community may determine its present receptiveness to alien species. Using recent large databases from observational studies, we find robust evidence that assemblage of plant community types from few phylogenetic lineages (in plots without aliens) corresponds to higher receptiveness to aliens. Establishment of aliens in phylogenetically poor communities corresponds to increased phylogenetic dispersion of recipient communities and to coexistence with rather than replacement of natives. This coexistence between natives and distantly related aliens in recipient communities of low phylogenetic dispersion may reflect patterns of trait assembly. In communities without aliens, low phylogenetic dispersion corresponds to increased dispersion of most traits, and establishment of aliens corresponds to increased trait concentration. We conclude that if quantified across the tree of life, high biodiversity correlates with decreasing receptiveness to aliens. Low phylogenetic biodiversity, in contrast, facilitates coexistence between natives and aliens even if they share similar trait states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.