Bats are reservoirs for several zoonotic pathogens, including filoviruses. Recent work highlights the diversity of bat borne filoviruses in Asia. High risk activities at the bat-human interface pose the threat of zoonotic virus transmission. We present evidence for prior exposure of bat harvesters and two resident fruit bat species to filovirus surface glycoproteins by screening sera in a multiplexed serological assay. Antibodies reactive to two antigenically distinct filoviruses were detected in human sera and to three individual filoviruses in bats in remote Northeast India. Sera obtained from Eonycteris spelaea bats showed similar patterns of cross-reactivity as human samples, suggesting them as the species responsible for the spillover. In contrast, sera from Rousettus leschenaultii bats reacted to two different virus glycoproteins. Our results indicate circulation of several filoviruses in bats and the possibility for filovirus transmission from bats to humans.
The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host–pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.