Background: Programmed cell death protein 1 (PD-1) antibody treatment is standard of care for melanoma and nonsmall-cell lung cancer (NSCLC). Accurately predicting which patients will benefit is currently not possible. Tumor uptake and biodistribution of the PD-1 antibody might play a role. Therefore, we carried out a positron emission tomography (PET) imaging study with zirconium-89 ( 89 Zr)-labeled pembrolizumab before PD-1 antibody treatment. Patients and methods: Patients with advanced or metastatic melanoma or NSCLC received 37 MBq (1 mCi) 89 Zrpembrolizumab (w2.5 mg antibody) intravenously plus 2.5 or 7.5 mg unlabeled pembrolizumab. After that, up to three PET scans were carried out on days 2, 4, and 7. Next, PD-1 antibody treatment was initiated. 89 Zrpembrolizumab tumor uptake was calculated as maximum standardized uptake value (SUV max ) and expressed as geometric mean. Normal organ uptake was calculated as SUV mean and expressed as a mean. Tumor response was assessed according to (i)RECIST v1.1. Results: Eighteen patients, 11 with melanoma and 7 with NSCLC, were included. The optimal dose was 5 mg pembrolizumab, and the optimal time point for PET scanning was day 7. The tumor SUV max did not differ between melanoma and NSCLC (4.9 and 6.5, P ¼ 0.49). Tumor 89 Zr-pembrolizumab uptake correlated with tumor response (P trend ¼ 0.014) and progression-free (P ¼ 0.0025) and overall survival (P ¼ 0.026). 89 Zr-pembrolizumab uptake at 5 mg was highest in the spleen with a mean SUV mean of 5.8 (standard deviation AE1.8). There was also 89 Zr-pembrolizumab uptake in Waldeyer's ring, in normal lymph nodes, and at sites of inflammation. Conclusion: 89 Zr-pembrolizumab uptake in tumor lesions correlated with treatment response and patient survival. 89 Zrpembrolizumab also showed uptake in lymphoid tissues and at sites of inflammation.
Immune checkpoint inhibitors (ICIs), by reinvigorating CD8+ T cell mediated immunity, have revolutionized cancer therapy. Yet, the systemic CD8+ T cell distribution, a potential biomarker of ICI response, remains poorly characterized. We assessed safety, imaging dose and timing, pharmacokinetics and immunogenicity of zirconium-89-labeled, CD8-specific, one-armed antibody positron emission tomography tracer 89ZED88082A in patients with solid tumors before and ~30 days after starting ICI therapy (NCT04029181). No tracer-related side effects occurred. Positron emission tomography imaging with 10 mg antibody revealed 89ZED88082A uptake in normal lymphoid tissues, and tumor lesions across the body varying within and between patients two days after tracer injection (n = 38, median patient maximum standard uptake value (SUVmax) 5.2, IQI 4.0–7.4). Higher SUVmax was associated with mismatch repair deficiency and longer overall survival. Uptake was higher in lesions with stromal/inflamed than desert immunophenotype. Tissue radioactivity was localized to areas with immunohistochemically confirmed CD8 expression. Re-imaging patients on treatment showed no change in average (geometric mean) tumor tracer uptake compared to baseline, but individual lesions showed diverse changes independent of tumor response. The imaging data suggest enormous heterogeneity in CD8+ T cell distribution and pharmacodynamics within and between patients. In conclusion, 89ZED88082A can characterize the complex dynamics of CD8+ T cells in the context of ICIs, and may inform immunotherapeutic treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.