alleles from Thai population with HLA alleles from both European and Asian countries, the distribution landscape of HLA-associated drug hypersensitivity across many countries could be observed. Consequently, this pharmacogenetics database offers a comprehensive view of pharmacogenetics marker distribution in Thailand that could be used as a reference for other Southeast Asian countries to validate the feasibility of their future pharmacogenetics deployment.
HLA-B*13:01 allele has been identified as the genetic determinant of dapsone hypersensitivity syndrome (DHS) among leprosy and non-leprosy patients in several studies. Dapsone hydroxylamine (DDS-NHOH), an active metabolite of dapsone, has been believed to be responsible for DHS. However, studies have not highlighted the importance of other genetic polymorphisms in dapsone-induced severe cutaneous adverse reactions (SCAR). We investigated the association of HLA alleles and cytochrome P450 (CYP) alleles with dapsone-induced SCAR in Thai non-leprosy patients. A prospective cohort study, 16 Thai patients of dapsone-induced SCARs (5 SJS-TEN and 11 DRESS) and 9 Taiwanese patients of dapsone-induced SCARs (2 SJS-TEN and 7 DRESS), 40 dapsone-tolerant controls, and 470 general Thai population were enrolled. HLA class I and II alleles were genotyped using polymerase chain reaction-sequence specific oligonucleotides (PCR-SSOs). CYP2C9, CYP2C19, and CYP3A4 genotypes were determined by the TaqMan real-time PCR assay. We performed computational analyses of dapsone and DDS-NHOH interacting with HLA-B*13:01 and HLA-B*13:02 alleles by the molecular docking approach. Among all the HLA alleles, only HLA-B*13:01 allele was found to be significantly associated with dapsone-induced SCARs (OR = 39.00, 95% CI = 7.67–198.21, p = 5.3447 × 10−7), SJS-TEN (OR = 36.00, 95% CI = 3.19–405.89, p = 2.1657 × 10−3), and DRESS (OR = 40.50, 95% CI = 6.38–257.03, p = 1.0784 × 10−5) as compared to dapsone-tolerant controls. Also, HLA-B*13:01 allele was strongly associated with dapsone-induced SCARs in Asians (OR = 36.00, 95% CI = 8.67–149.52, p = 2.8068 × 10−7) and Taiwanese (OR = 31.50, 95% CI = 4.80–206.56, p = 2.5519 × 10−3). Furthermore, dapsone and DDS-NHOH fit within the extra-deep sub pocket of the antigen-binding site of the HLA-B*13:01 allele and change the antigen-recognition site. However, there was no significant association between genetic polymorphism of cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) and dapsone-induced SCARs (SJS-TEN and DRESS). The results of this study support the specific genotyping of the HLA-B*13:01 allele to avoid dapsone-induced SCARs including SJS-TEN and DRESS before initiating dapsone therapy in the Asian population.
Prior knowledge of allele frequencies of cytochrome P450 polymorphisms in a population is crucial for the revision and optimization of existing medication choices and doses. In the current study, the frequency of the CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP2C19*6, CYP2C19*17, and CYP3A4 (rs4646437) alleles in a Thai population across different regions of Thailand was examined. Tests for polymorphisms of CYP2C9 and CYP3A4 were performed using TaqMan SNP genotyping assay and CYP2C19 was performed using two different methods; TaqMan SNP genotyping assay and Luminex x Tag V3. The blood samples were collected from 1205 unrelated healthy individuals across different regions within Thailand. Polymorphisms of CYP2C9 and CYP2C19 were transformed into phenotypes, which included normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), and rapid metabolizers (RM). The CYP2C9 allele frequencies among the Thai population were 0.08% and 5.27% for the CYP2C9*2 and CYP2C9*3 alleles, respectively. The CYP2C19 allele frequencies among the Thai population were 25.60%, 2.50%, 0.10%, and 1.80% for the CYP2C19*2, CYP2C19*3, CYP2C19*6, and CYP2C19*17 alleles, respectively. The allele frequency of the CYP3A4 (rs4646437) variant allele was 28.50% in the Thai population. The frequency of the CYP2C9*3 allele was significantly lower among the Northern Thai population (P < 0.001). The frequency of the CYP2C19*17 allele was significantly higher in the Southern Thai population (P < 0.001). Our results may provide an understanding of the ethnic differences in drug responses and support for the utilization of pharmacogenomics testing in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.