Histone modifications, including lysine methylation, are epigenetic marks that influence many biological pathways. Accordingly, many methyltransferases have critical roles in various biological processes, and their dysregulation is often associated with cancer. However, the biological functions and regulation of many methyltransferases are unclear. Here, we report that a human homolog of the methyltransferase SET (U(var), nhancer of zeste, andrithorax) domain containing 3 (SETD3) is cell cycle-regulated; SETD3 protein levels peaked in S phase and were lowest in M phase. We found that the β-isoform of the tumor suppressor F-box and WD repeat domain containing 7 (FBXW7β) specifically mediates SETD3 degradation. Aligning the SETD3 sequence with those of well known FBXW7 substrates, we identified six potential non-canonical Cdc4 phosphodegrons (CPDs), and one of them, CPD1, is primarily phosphorylated by the kinase glycogen synthase kinase 3 (GSK3β), which is required for FBXW7β-mediated recognition and degradation. Moreover, depletion or inhibition of GSK3β or FBXW7β resulted in elevated SETD3 levels. Mutations of the phosphorylated residues in CPD1 of SETD3 abolished the interaction between FBXW7β and SETD3 and prevented SETD3 degradation. Our data further indicated that SETD3 levels positively correlated with cell proliferation of liver cancer cells and liver tumorigenesis in a xenograft mouse model, and that overexpression of FBXW7β counteracts the SETD3's tumorigenic role. We also show that SETD3 levels correlate with cancer malignancy, indicated by SETD3 levels that the 54 liver tumors are 2-fold higher than those in the relevant adjacent tissues. Collectively, these data elucidated that a GSK3β-FBXW7β-dependent mechanism controls SETD3 protein levels during the cell cycle and attenuates its oncogenic role in liver tumorigenesis.
HPV infection is high in esophageal carcinoma of Henan emigrants, local residents and patients in Hubei Cancer Hospital.HPV is closely related with esophageal squamous cell carcinoma. HPV infection may play an important role in esophageal squamous cell carcinoma.
Heat shock proteins (Hsps) can protect cells, organs, and whole organisms against damage caused by abnormal environmental hazards. Some studies have reported that lymphocyte Hsps may serve as biomarkers for evaluating disease status and exposure to environmental stresses; however, few epidemiologic studies have examined the associations between lymphocyte Hsps levels and lung cancer risk. We examined lymphocyte levels of Hsp27 and Hsp70 in 263 lung cancer cases and age-and gender-matched cancer-free controls by flow cytometry. Multivariate logistic regression models were used to estimate the association between lymphocyte Hsps levels and lung cancer risk. Our results showed that Hsp27 levels were significantly lower in lung cancer cases than in controls (16.5 vs 17.8 mean fluorescence intensity, P<0.001). This was not observed for Hsp70 levels. Further stratification analysis revealed that lymphocyte Hsp27 levels were negatively associated with lung cancer risk especially in males and heavy smokers. There was a statistical trend of low odd ratios (95% confidence intervals) and upper tertile levels of Hsp27 [1.000, 0.904 (0.566-1.444) and 0.382 (0.221-0.658, P trend =0.001) in males and 1. 000, 0.9207 (0.465-1.822) and 0.419 (0.195-0.897, P trend =0.036) in heavy smokers] after adjustment for confounding factors. These results suggest that lower lymphocyte Hsp27 levels might be associated with an increased risk of lung cancer. Our findings need to be validated in a large prospective study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.