Optical satellite images are a critical data source; however, cloud cover often compromises their quality, hindering image applications and analysis. Consequently, effectively removing clouds from optical satellite images has emerged as a prominent research direction. While recent advancements in cloud removal primarily rely on generative adversarial networks, which may yield suboptimal image quality, diffusion models have demonstrated remarkable success in diverse image-generation tasks, showcasing their potential in addressing this challenge. This paper presents a novel framework called DiffCR, which leverages conditional guided diffusion with deep convolutional networks for high-performance cloud removal for optical satellite imagery. Specifically, we introduce a decoupled encoder for conditional image feature extraction, providing a robust color representation to ensure the close similarity of appearance information between the conditional input and the synthesized output. Moreover, we propose a novel and efficient time and condition fusion block within the cloud removal model to accurately simulate the correspondence between the appearance in the conditional image and the target image at a low computational cost. Extensive experimental evaluations on two commonly used benchmark datasets demonstrate that DiffCR consistently achieves state-of-the-art performance on all metrics, with parameter and computational complexities amounting to only 5.1% and 5.4%, respectively, of those previous best methods. The source code, pre-trained models, and all the experimental results will be publicly available at https://github.com/XavierJiezou/DiffCR upon the paper's acceptance of this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.