Rituxan (Rituximab) is a chimeric mAb with human IgG1 constant domains used in the therapy of non-Hodgkin’s B cell lymphomas. This Ab targets B cells by binding to the cell-surface receptor, CD20. In our investigation of the mechanism of B cell depletion mediated by Rituximab, we first constructed mutants of Rituximab defective in complement activation but with all other effector functions intact. Our results demonstrate that the previously described C1q binding motif in murine IgG2b constituting residues E318, K320, and K322 is not applicable to a human IgG1 when challenged with either human, rabbit, or guinea pig complement. Alanine substitution at positions E318 and K320 in Rituximab had little or no effect on C1q binding and complement activation, whereas alanine substitution at positions D270, K322, P329, and P331 significantly reduced the ability of Rituximab to bind C1q and activate complement. We have also observed that concentrations of complement approaching physiological levels are able to rescue >60% of the activity of these mutant Abs with low affinity for C1q. These data localize the C1q binding epicenter on human IgG1 and suggest that there are species-specific differences in the C1q binding site of Igs.
Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7-9.1 and was composed of about 20% acidic variants, 12% basic variants, and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic, and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences, and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs, and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity, or the PK properties in rats.
This manuscript describes two sites in a human IgG1 that, when mutated individually or in combination, result in a dramatic increase in C1q binding and complement-dependent cytotoxicity activity. These two residues, K326 and E333, are located at the extreme ends of the C1q binding epicenter in the CH2 domain of a human IgG. A mutation to tryptophan at K326 debilitates Ab-dependent cell-mediated cytotoxicity activity. In addition, substitutions of the residues E333 with serine and of K326 with tryptophan in a human IgG2 confer biological activity in the complement-dependent cytotoxicity assay in which the wild-type IgG2 is inactive. This study reveals that the residues K326 and E333 play a significant role in the control of the biological activity of an IgG molecule and can rescue the activity of an inactive IgG isotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.