Finding promising materials that show large thermoelectricity at low temperatures is crucial for low-temperature refrigeration applications. Here, we report a significantly large thermoelectric power factor ( PF) up to 50 μW cm−1 K−2 at an extremely low temperature of ∼8 K in a quasi-one-dimensional (Q1D) antiferromagnet KMn6Bi5, in which highly electrical conductivity and dramatic enhancement of Seebeck coefficient may favor its occurrence. In addition, a giant Nernst signal has also been detected with a maximum value of 24 μV K−1 T−1 at ∼5 K. All these intriguing characteristics observed in KMn6Bi5 can be attributed to the manifestation of the unusually strong coupling among spin, charge, lattice, and one dimensionality in KMn6Bi5. Our findings provide fundamental insight into the thermal transport in Q1D antiferromagnets and should stimulate further experimental exploration of thermal transport in such Q1D family for possible thermoelectric applications at extremely low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.