Current diagnostic approaches that characterize T-cell deficiency by analyzing diversity of T-cell receptor sequences effectuate limited informational gain about the actual restrictiveness. For deeper insight into T-cell receptor repertoires we developed next-generation-sequencing-spectratyping, which employs high coverage Roche/454 sequencing of T-cell receptor (b)-chain amplicons. For automated analysis of high-throughput-sequencing data, we developed a freely available software, the TCR profiler. Gene usage, length, encoded amino acid sequence and sequence diversity of the complementarity determining region 3 were determined and comprehensively integrated into a novel complexity score. Repertoires of CD8 + T cells from children with idiopathic or hepatitis-induced very severe aplastic anemia (n=7), children two months after bone marrow transplantation (n=7) and healthy controls (children n=5, adults n=5) were analyzed. Complexity scores clearly distinguished between healthy and diseased, and even between different immune deficiency states. The repertoire of aplastic anemia patients was dominated by public (i.e. present in more than one person) T-cell receptor clonotypes, whereas only 0.2% or 1.9% were public in normal children and adults, respectively. The CDR3 sequence ASSGVGFSGANVLT was highly prevalent in 3 cases of hepatitis-induced anemia (15-32% of all sequences), but was only low expressed in idiopathic aplastic anemia (2-5%, n=4) or healthy controls (<1%). Fifteen high frequent sequences were present exclusively in aplastic anemia patients. Next-generation-sequencing-spectratyping allows in-depth analysis of Tcell receptor repertoires and their restriction in clinical samples. A dominating clonotype was identified in hepatitis-induced anemia that may be associated with disease pathogenesis and several aplastic-anemia-associated, putatively autoreactive clonotypes were sequenced.Next-generation-sequencing-spectratyping reveals public T-cell receptor repertoires in pediatric very severe aplastic anemia and identifies a b chain CDR3 sequence associated with hepatitis-induced pathogenesis
Here we present a novel method “Genomic inverse PCR for exploration of ligated breakpoints” (GIPFEL) that allows the sensitive detection of recurrent chromosomal translocations. This technique utilizes limited amounts of DNA as starting material and relies on PCR based quantification of unique DNA sequences that are created by circular ligation of restricted genomic DNA from translocation bearing cells. Because the complete potential breakpoint region is interrogated, a prior knowledge of the individual, specific interchromosomal fusion site is not required. We validated GIPFEL for the five most common gene fusions associated with childhood leukemia (MLL-AF4, MLL-AF9, MLL-ENL, ETV6-RUNX1, and TCF3-PBX1). A workflow of restriction digest, purification, ligation, removal of linear fragments and precipitation enriching for circular DNA was developed. GIPFEL allowed detection of translocation specific signature sequences down to a 10−4 dilution which is close to the theoretical limit. In a blinded proof-of-principle study utilizing DNA from cell lines and 144 children with B-precursor-ALL associated translocations this method was 100% specific with no false positive results. Sensitivity was 83%, 65%, and 24% for t(4;11), t(9;11) and t(11;19) respectively. Translocation t(12;21) was correctly detected in 64% and t(1;19) in 39% of the cases. In contrast to other methods, the characteristics of GIPFEL make it particularly attractive for prospective studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.