The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Selective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical potential at the solution/membrane interface. The Donnan potential results in the partial exclusion of co-ion, providing the basis of permselectivity. Although there are well-established ways to indirectly estimate the Donnan potential, it has been widely reported that it cannot be measured directly. Here we report the first direct measurement of the Donnan potential of an ion exchange membrane equilibrated with salt solutions. Our results highlight the dependence of the Donnan potential on external salt concentration and counter-ion valence, and show a reasonable agreement with current theoretical models of IEMs, which incorporate ion activity coefficients. By directly measuring the Donnan potential, we eliminate ambiguities that arise from limitations inherent in current models.
Water interactions with polymers play an important role in nearly all aspects of life. Yet, precise understanding and quantification of such interactions at the molecular level is incomplete because many surface sensitive techniques lack the ability to operate under in situ conditions. To fill this gap, we applied tender ambient pressure X-ray photoelectron spectroscopy to study the effect of polymer functional groups, associated interaction types (polar vs ionic), and counterion types on water sorption. Experiments were carried out on model polymer systems of hydrophobic polystyrene, hydrophilic polyvinyl phenol, and charged polystyrene sulfonate thin films. Interaction of water vapor with these polymer surfaces was investigated in situ from ultra-high vacuum up to 100% relative humidity at room temperature. We showed directly at a molecular scale that water sorption is controlled by the polymer's polar and charged groups. Additionally, counterion specific hydration mechanism on polyelectrolytes were revealed. Overall, these results provide mechanistic insights for the design of polymeric materials with improved properties.
Liquid poly(ethylene glycol) (molecular weight, ∼600 Da) with a low vapor pressure is used as droplets in an ultrahigh-vacuum X-ray photoelectron spectrometer (XPS) chamber with traditional electrowetting on dielectric (EWOD) device geometry. We demonstrate that, using XPS data, independent of the sign of the applied voltage, the droplet expands on the substrate with the application of a nonzero voltage and contracts back when the voltage is brought back to zero. However, the main focus of the present investigation is about tracing the electrical potential developments on and around the droplet, using the shifts in the binding energy positions of the core levels representative of the liquid and/or the substrate in an noninvasive and chemically specific fashion, under imposed electrical fields, with an aim of shedding light on numerous models employed for simulating EWOD phenomenon, as well as on certain properties of liquid/solid interfaces. While the lateral resolution of XPS does not permit to interrogate the interface directly, we explicitly show that critical information can be extracted by probing both sides of the interface simultaneously under external bias in the form of potential steps or direct current. We find that, even though no potential drop is observed at the metal-wire electrode/liquid interface, the entire potential drop develops across the liquid/solid-substrate interface, which is faster than our probe time window (∼100 ms) and is promptly complying with the applied bias until breakdown. No indication of band bending nor additional broadening can be observed in the C 1s peak of the liquid, even under electrical field strengths exceeding 10 V/m. Moreover and surprisingly, the liquid recovers within seconds after each catastrophic breakdown. All of these findings are new and expected to contribute significantly to a better understanding of certain physicochemical properties of liquid/solid interfaces.
Stable N-heterocyclic carbenes (NHC) are a class of compounds that has attracted a huge amount of interest in the last decade. One way to prepare NHCs is through chemical or electrochemical reduction of 1,3-disubstituted imidazolium cations. We are presenting an in-situ electrochemical X-ray Photoelectron Spectroscopy (XPS) study where electrochemically reduced imidazolium cations lead to production of stable NHC. The electroactive imidazolium species is not only the reactant, but also part of the ionic liquid which serves as the electrolyte, the medium and the electroactive material. This allows us to directly probe the difference between the parent imidazolium ion and the NHC through the use of XPS. The interpretation of the results is supported by both observation of reversible redox peaks in the voltammogram and the density functional theory calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.