We describe a model of object recognition as machine translation. In this model, recognition is a process of annotating image regions with words. Firstly, images are segmented into regions, which are classified into region types using a variety of features. A mapping between region types and keywords supplied with the images, is then learned, using a method based around EM. This process is analogous with learning a lexicon from an aligned bitext. For the implementation we describe, these words are nouns taken from a large vocabulary. On a large test set, the method can predict numerous words with high accuracy. Simple methods identify words that cannot be predicted well. We show how to cluster words that individually are difficult to predict into clusters that can be predicted well -for example, we cannot predict the distinction between train and locomotive using the current set of features, but we can predict the underlying concept. The method is trained on a substantial collection of images. Extensive experimental results illustrate the strengths and weaknesses of the approach.
Given an image (or video clip, or audio song), how do we automatically assign keywords to it? The general problem is to find correlations across the media in a collection of multimedia objects like video clips, with colors, and/or motion, and/or audio, and/or text scripts. We propose a novel, graph-based approach, "MMG", to discover such cross-modal correlations.Our "MMG" method requires no tuning, no clustering, no user-determined constants; it can be applied to any multimedia collection, as long as we have a similarity function for each medium; and it scales linearly with the database size. We report auto-captioning experiments on the "standard" Corel image database of 680 MB, where it outperforms domain specific, fine-tuned methods by up to 10 percentage points in captioning accuracy (50% relative improvement).
Abstract. We describe a "bag-of-rectangles" method for representing and recognizing human actions in videos. In this method, each human pose in an action sequence is represented by oriented rectangular patches extracted over the whole body. Then, spatial oriented histograms are formed to represent the distribution of these rectangular patches. In order to carry the information from the spatial domain described by the bag-of-rectangles descriptor to temporal domain for recognition of the actions, four different methods are proposed. These are namely, (i) frame by frame voting, which recognizes the actions by matching the descriptors of each frame, (ii) global histogramming, which extends the idea of Motion Energy Image proposed by Bobick and Davis by rectangular patches, (iii) a classifier based approach using SVMs, and (iv) adaptation of Dynamic Time Warping on the temporal representation of the descriptor. The detailed experiments are carried out on the action dataset of Blank et. al. High success rates (100%) prove that with a very simple and compact representation, we can achieve robust recognition of human actions, compared to complex representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.