Concrete is one of the materials in which polymer wastes are utilized. Generally, these wastes are added at specific rates in scientific studies but an important problem of waste polymers is size irregularity. Even when consistent dosage rates are used, variations in polymer size can lead to variability in the physical and mechanical properties of the concrete produced. The aim of this study is to determine physical and mechanical properties of polyvinyl chloride (PVC)-containing concretes. In order to produce normal and high strength concretes, 10%, 20%, and 30% replacement ratios of PVC powder and granules by volume of aggregate are used. Slump, fresh and hardened densities, compressive strength, capillary water absorption, and abrasion were tested on all concrete types. As the PVC ratio increases, important changes are seen in all physical and mechanical concrete properties. The unit weights of the 10%, 20%, and 30% replacement PVC powder concretes are lower by ∼ 4%, 8%, and 13%, respectively, as compared to the reference mixtures, and the replacement PVC granule concretes are lower by ∼ 2%, 4%, and 7%. Compressive strength test results showed similar trends. As PVC replacement increases, the capillary water absorption decreases between 10% and 50%, and abrasion decreases between 27% and 77%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.