Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n¼5609) born at mean (standard deviation [SD]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO 2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]¼1.16; 95% confidence interval [CI], 1.04e1.28
We investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE-1) in neonatal hypoxia/ischemia (HI). HI was induced by unilateral ligation of the left common carotid artery in postnatal day 9 (P9) mice, and subsequent exposure of animals to 8% O(2) for 55 min. A pre/posttreatment group received a selective and potent NHE-1 inhibitor HOE 642 (0.5 mg/kg, intraperitoneally) 5 min before HI, then at 24 and 48 h after HI. A posttreatment group received HOE 642 (0.5 mg/kg) at 10 min, 24 h, and 48 h after HI. Saline injections were used as vehicle controls. The vehicle-control brains at 72 h after HI exhibited neuronal degeneration in the ipsilateral hippocampus, striatum, and thalamus, as identified with Fluoro-Jade C positive staining and loss of microtubule-associated protein 2 (MAP2) expression. NHE-1 protein was upregulated in glial fibrillary acidic protein-positive reactive astrocytes. In HOE 642-treated brains, the morphologic hippocampal structures were better preserved and displayed less neurodegeneration and a higher level of MAP2 expression. Motor-learning deficit was detected at 4 weeks of age after HI in the vehicle control group. Inhibition of NHE-1 in P9 mice not only reduced neurodegeneration during the acute stage of HI but also improved the striatum-dependent motor learning and spatial learning at 8 weeks of age after HI. These findings suggest that NHE-1-mediated disruption of ionic homeostasis contributes to striatal and CA1 pyramidal neuronal injury after neonatal HI.
In this study, we investigated the effects of a bioactive high-affinity TrkB receptor agonist 7,8-dihydroxyflavone (7,8 DHF) on neonatal brain injury in female and male mice after hypoxia ischemia (HI). HI was induced by exposure of postnatal day 9 (P9) mice to 10% O2 for 50 minutes at 37°C after unilateral ligation of the left common carotid artery. Animals were randomly assigned to HI-vehicle control group [phosphate buffered saline (PBS), intraperitoneally (i.p.)] or HI + 7,8 DHF-treated groups (5 mg/kg in PBS, i.p at 10 min, 24 h, or with subsequent daily injections up to 7 days after HI). The HI-vehicle control mice exhibited neuronal degeneration in the ipsilateral hippocampus and cortex with increased Fluoro-Jade C positive staining and loss of microtubule associated protein 2 expression. In contrast, the 7,8 DHF-treated mice showed less hippocampal neurodegeneration and astrogliosis, with more profound effects in female than in male mice. Moreover, 7,8 DHF-treated mice improved motor learning and spatial learning at P30-60 compared to the HI-vehicle control mice. Diffusion tensor imaging of ex-vivo brain tissues at P90 after HI revealed less reduction of fractional anisotropy values in the ipsilateral corpus callosum of 7,8 DHF-treated brains, which was accompanied with better preserved myelin basic protein expression and CA1 hippocampal structure. Taken together, these findings strongly suggest that TrkB agonist 7,8 DHF is protective against HI-mediated hippocampal neuronal death, white matter injury, and improves neurological function, with a more profound response in female than in male mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.