Contact antimicrobial coatings with poly(alkylammonium) compositions have been a subject of increasing interest in part because of the contribution of biocide release coatings to antibiotic resistance. Herein, a concept for antimicrobial coatings is developed on the basis of the thermodynamically driven surface concentration of soft block side chains. The concept incorporates structural and compositional guidance from naturally occurring antimicrobial proteins and achieves compositional economy via a polymer-surface modifier (PSM). To implement this concept, polyurethanes were prepared having random copolymer 1,3-propylene oxide soft blocks with alkylammonium and either trifluoroethoxy or PEGlyted side chains. Six carbon (C6) and twelve carbon (C12) alkylammonium chain lengths were used. The PSMs were first tested as 100% coatings and were highly effective against aerosol challenges of Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). To evaluate the surface concentration, solutions containing 2 wt % PSM with a conventional polyurethane were evaporatively coated onto glass slides. These 2% PSM coatings were tested against aerosol challenges of Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria (107 CFU/mL/30 min). A copolymer soft block containing trifluorethoxy (89 mol %) and C-12 alkylammonium (11 mol %) side chains gave the highest biocidal effectiveness in 30 min: 2 wt %, Gram(+/-) bacteria, 100% kill, and 3.6-4.4 log reduction. A zone of inhibition test showed no biocide release for PSMs and PSM-modified compositions. Characteristics that contribute to concept validation include good hard block/soft block phase separation, a cation/co-repeat group ratio mimicking natural biocidal proteins, a semifluorinated "chaperone" aiding in alkylammonium surface concentration, and a low Tg for the alkylammonium soft block.
This study focuses on the solution antimicrobial effectiveness of a novel class of copolyoxetanes with quaternary ammonium and PEG-like side chains. A precursor P[(BBOx-m)(ME2Ox)] copolyoxetane was prepared by cationic ring-opening copolymerization of 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) to give random copolymers with 14-100 (m) mol % BBOx. Reaction of P[(BBOx-m)(ME2Ox)] with dodecyl dimethylamine gave the corresponding quaternary P[(C12-m)(ME2Ox)] polycation salts, designated C12-m, as viscous liquids in 100% yield. BBOx/ME2Ox and C12/ME2Ox ratios were obtained by (1)H NMR spectroscopy. C12-m molecular weights (M(n), 3.5-21.9 kDa) were obtained from (1)H NMR end group analysis. DSC studies up to 150 °C showed only thermal transitions between -69 and -34 °C assigned to T(g) values. Antibacterial activity for the C12-m copolyoxetanes was tested by determining minimum inhibitory concentrations (MICs) against Gram(+) Staphylococcus aureus and Gram(-) Escherichia coli and Pseudomonas aeruginosa . MIC decreased with increasing C12 mol percent, reaching a minimum in the range C12-43 to C12-60. Overall, the antimicrobial with consistently low MICs for the three tested pathogenic bacteria was C12-43: (bacteria, MIC, μg/mL) E. coli (6), S. aureus (5), and P. aeruginosa (33). For C12-43, minimum biocidal concentration (MBC) to reach 99.99% kill in 24 h required 1.5× MIC for S. aureus and 2× MIC for E. coli and P. aeruginosa . At 5× MIC against a challenge of 10(8) cfu/mL, C12-43 kills ≥99% S. aureus , E. coli , and P. aeruginosa within 1 h. C12-m copolyoxetane cytotoxicity toward human red blood cells was low, indicating good prospects for biocompatibility. The tunability of C12-m copolyoxetane compositions, effective antimicrobial behavior against Gram(+) and Gram(-) bacteria, and promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.