Current appearance models for the sky are able to represent clear sky illumination to a high degree of accuracy. However, these models all lack a common feature of real-skies: clouds. These are an essential component for many applications which rely on realistic skies, such as image editing and synthesis. While clouds can be added to existing sky models through rendering, this is hard to achieve due to the difficulties of representing clouds and the complexities of volumetric light transport. In this work, an alternative approach to this problem is proposed whereby clouds are synthesized using a learned data-driven representation. This leverages a captured collection of High Dynamic Range cloudy sky imagery, and combines this dataset with clear sky models to produce plausible cloud appearance from a coarse representation of cloud positions. This representation is artist controllable, allowing for novel cloudscapes to be rapidly synthesized, and used for lighting virtual environments.
Image editing is a commonly studied problem in computer graphics. Despite the presence of many advanced editing tools, there is no satisfactory solution to controllably update the position of the sun using a single image. This problem is made complicated by the presence of clouds, complex landscapes, and the atmospheric effects that must be accounted for. In this paper, we tackle this problem starting with only a single photograph. With the user clicking on the initial position of the sun, our algorithm performs several estimation and segmentation processes for finding the horizon, scene depth, clouds, and the sky line. After this initial process, the user can make both fine-and large-scale changes on the position of the sun: it can be set beneath the mountains or moved behind the clouds practically turning a midday photograph into a sunset (or vice versa). We leverage a precomputed atmospheric scattering algorithm to make all of these changes not only realistic but also in real-time. We demonstrate our results using both clear and cloudy skies, showing how to add, remove, and relight clouds, all the while allowing for advanced effects such as scattering, shadows, light shafts, and lens flares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.