We found that the Drosophila brain is assembled from families of multiple LPUs and their interconnections. This provides an essential first step in the analysis of information processing within and between neurons in a complete brain.
Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit fly brain is small, it contains approximately 100 000 neurons. It is impossible to trace all the neurons manually. This study presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to process more than 16 000 neurons. This study also shows that further analysis based on the reconstruction results can be performed to gather more information on the neural network.
The rapid development of microscopic imaging techniques has greatly facilitated time-lapse imaging of neuronal morphology. However, analysis of structural dynamics in the vast amount of 4-Dimensional data generated by in vivo or ex vivo time-lapse imaging still relies heavily on manual comparison, which is not only laborious, but also introduces errors and discrepancies between individual researchers and greatly limits the research pace. Here we present a supervised 4D Structural Plasticity Analysis (4D SPA) computer method to align and match 3-Dimensional neuronal structures across different time points on a semi-automated basis. We demonstrate 2 applications of the method to analyze time-lapse data showing gross morphological changes in dendritic arbor morphology and to identify the distribution and types of branch dynamics seen in a series of time-lapse images. Analysis of the dynamic changes of neuronal structure can be done much faster and with greatly improved consistency and reliability with the 4D SPA supervised computer program. Users can format the neuronal reconstruction data to be used for this analysis. We provide file converters for Neurolucida and Imaris users. The program and user manual are publically assessable and operate through a graphical user interface on Windows and Mac OSX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.