Previously, we reported isolation and characterization of mutacin III and genetic analysis of mutacin III biosynthesis genes from the group III strain of Streptococcus mutans, UA787 (F. Qi, P. Chen, and P. W. Caufield, Appl. Environ. Microbiol. 65:3880-3887, 1999). During the same process of isolating the mutacin III structural gene, we also cloned the structural gene for mutacin I. In this report, we present purification and biochemical characterization of mutacin I from the group I strain CH43 and compare mutacin I and mutacin III biosynthesis genes. The mutacin I biosynthesis gene locus consists of 14 genes in the order mutR, -A, -A, -B, -C, -D, -P, -T, -F, -E, -G, orfX, orfY, orfZ. mutA is the structural gene for mutacin I, while mutA is not required for mutacin I activity. DNA and protein sequence analysis revealed that mutacins I and III are homologous to each other, possibly arising from a common ancestor. The mature mutacin I is 24 amino acids in size and has a molecular mass of 2,364 Da. Ethanethiol modification and peptide sequencing of mutacin I revealed that it contains six dehydrated serines, four of which are probably involved with thioether bridge formation. Comparison of the primary sequence of mutacin I with that of mutacin III and epidermin suggests that mutacin I likely has the same bridging pattern as epidermin.Lantibiotics are lanthionine-containing small-peptide antibiotics that are produced by gram-positive bacteria (11, 32). The lantibiotics are ribosomally synthesized and posttranslationally modified (34). The modification reactions include dehydration of serine and threonine residues and addition of thiol groups from cysteine residues to the double bond to form lanthionines and -methyllanthionines, respectively. Some dehydrated serine or threonine residues may remain as such in the mature lantibiotic peptide.Based on the secondary structures, Jung assigned lantibiotics into two classes, types A (linear) and B (globular) (11). de Vos et al. (6) and Sahl and Bierbaum (31) further divided each class into subgroups according to their primary peptide sequences. Thus, subgroup AI contains the nisin-like lantibiotics, with nisin, subtilin, epidermin, and pep5 as the most thoroughly characterized members (1,7,8,12,38). Subgroup AII consists of lacticin 481, salivaricin, and variacin (10,25,26,30). The genes responsible for biosynthesis of lantibiotics are organized in operon-like structures. The biosynthesis locus of all members in the subgroup AI lantibiotics consists of lanA, the structural gene for the lantibiotic; lanB and lanC, the modifying enzyme genes for posttranslational modification of the preprolantibiotic; lanP, the protease gene for processing of the prelantibiotic; and lanT, the ABC transporter for secretion of the lantibiotic. In addition, epidermin and gallidermin have an extra gene, lanD, which is responsible for the C-terminal oxidative decarboxylation of the lantibiotic (17, 18). In comparison, subgroup AII lantibiotics have simpler genomic organizations. In subgroup AII, ...
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.