Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic.
Simulations of eight different regional climate models (RCMs) have been performed for the period September 1997–September 1998, which coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) project period. Each of the models employed approximately the same domain covering the western Arctic, the same horizontal resolution of 50 km, and the same boundary forcing. The models differ in their vertical resolution as well as in the treatments of dynamics and physical parameterizations. Both the common features and differences of the simulated spatiotemporal patterns of geopotential, temperature, cloud cover, and long-/shortwave downward radiation between the individual model simulations are investigated. With this work, we quantify the scatter among the models and therefore the magnitude of disagreement and unreliability of current Arctic RCM simulations. Even with the relatively constrained experimental design we notice a considerable scatter among the different RCMs. We found the largest across-model scatter in the 2 m temperature over land, in the surface radiation fluxes, and in the cloud cover which implies a reduced confidence level for these variables
In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.
ABSTRACT:Owing to the large-scale transport of pollution-derived aerosols from the mid-latitudes to the Arctic, most of the aerosols are coated with acidic sulfate during winter in the Arctic. Recent laboratory experiments have shown that acid coating on dust particles substantially reduces the ability of these particles to nucleate ice crystals. Simulations performed using the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) are used to assess the potential effect of acid-coated ice nuclei on the Arctic cloud and radiation processes during January and February 2007. Ice nucleation is treated using a new parameterization based on laboratory experiments of ice nucleation on sulphuric acid-coated and uncoated kaolinite particles. Results show that acid coating on dust particles has an important effect on cloud microstructure, atmospheric dehydration, radiation and temperature over the Central Arctic, which is the coldest part of the Arctic. Mid and upper ice clouds are optically thinner while low-level mixed-phase clouds are more frequent and persistent. These changes in the cloud microstructures affect the radiation at the top of the atmosphere with longwave negative cloud forcing values ranging between 0 and −6 W m −2 over the region covered by the Arctic air mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.