Mean platelet survival and turnover were simultaneously determined with autologous 111In-labeled platelets (111In-AP) and homologous 51Cr- labeled platelets (51Cr-HP) in ten patients with chronic immune thrombocytopenic purpura (ITP). In vivo redistribution of the 111In-AP was quantitated with a scintillation camera and computer-assisted image analysis. The patients were divided into two groups: those with splenic platelet sequestration (spleen-liver 111In activity ratio greater than 1.4), and those with diffuse sequestration in the reticuloendothelial system. The latter patients had more severe ITP reflected by pronounced thrombocytopenia, decreased platelet turnover, and prominent early hepatic platelet sequestration. Mean platelet life span estimated with 51Cr-HP was consistently shorter than that of 111In-AP. Platelet turnover determined with 51Cr-HP was thus over-estimated. The difference in results with the two isotope labels was apparently due to greater in vivo elution of 51Cr. Although the limitations of the techniques should be taken into account, these findings indicate that platelet turnover is not always normal or increased in ITP, but is low in severe disease. We suggest that this may be ascribed to damage to megakaryocytes by antiplatelet antibody. The physical characteristics in 111In clearly make this radionuclide superior to 51Cr for the study of platelet kinetics in ITP.
As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward. Neuronal activity in the premotor, primary motor and posterior parietal cortical areas of non-human primates has been successfully used to control motor tasks [16] in BCI systems. Studies have shown that primates can learn to reach and grasp virtual objects by controlling a robot arm through a closed-loop brain-machine interface using mathematical modeling to extract several motor parameters from the electrical activity of frontoparietal neuronal ensembles [17]. In such a system, monkey primary motor neurons are decoded into a signal that can move a computer cursor to a new position in two-dimensional space [18]. These methods transform neuronal population signals in the motor areas into real-time movements of prosthetic devices. Unfortunately, this type of motor information cannot be obtained in patients with disorders affecting motor-related brain areas. It is well established that the prefrontal cortex (PFC) is associated with behavioral flexibility, working memory, planning, spatial navigation, and goal-directed behavior [19,20]. Despite the important functions of the PFC, it has never been utilized in BCI systems. Increased understanding of the way in which the brain represents movement would facilitate the design of appropriate decoding algorithms, which form the basis of current BCI research. Nonetheless, we hypothesize that it is not necessary to fully decode neural signals. Simple models and
In the present study, we investigated age-related changes in pituitary adenylate cyclase-activating polypeptide (PACAP) immunoreactivity and its protein levels in the gerbil hippocampus at various ages using immunohistochemistry and western blot analysis. In the post-natal month 1 (PM 1) group, PACAP-immunoreactive cells were found in all hippocampal subregions. The number of PACAP-immunoreactive cells was decreased in the PM 3 group and was still more decreased in the PM 6 and 12 groups. Thereafter, in the PM 18 and 24 groups, PACAP-immunoreactive cells were significantly increased again. However, in the mossy fibre zone, PACAP immunostaining was very strong in the adult group, especially in the PM 6 group. In addition, PACAP protein level was highest at PM 6, showing a slight decrease at PM 24. These results indicate that PACAP-immunoreactive cells are lowest in the adult stage and highest in the aged stage. However, PACAP immunoreactivity in the mossy fibre zone and PACAP protein level in the hippocampus are highest in the adult stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.