The abrasive wear properties of stir-cast A356 aluminum alloy-5 vol pct fly ash composite were tested against hard SiC p abrasive paper and compared to those of the A356 base alloy. The results indicate that the abrasive wear resistance of aluminum-fly ash composite is similar to that of aluminum-alumina fiber composite and is superior to that of the matrix alloy for low loads up to 8 N (transition load) on a pin. At loads greater than 8 N, the wear resistance of aluminum-fly ash composite is reduced by debonding and fracture of fly ash particles. Microscopic examination of the worn surfaces, wear debris, and subsurface shows that the base alloy wears primarily by microcutting, but the composite wears by microcutting and delamination caused by crack propagation below the rubbing surface through interfaces between fly ash and silicon particles and the matrix. The decreasing specific wear rates and friction during abrasion wear with increasing load have been attributed to the accumulation of wear debris in the spaces between the abrading particles, resulting in reduced effective depth of penetration and eventually changing the mechanism from two-body to three-body wear, which is further indicated by the magnitude of wear coefficient.
The paper discusses the influence of viscoelasticity in elastohydrodynamic lubrication (EHL). It is shown that viscoelastic effects, particularly in soft materials such as rubber and polymers, may significantly affect the lubrication process. The variations of the pressure and film thickness with viscoelasticity are discussed, as is the internal energy loss in the material. Two effects are present. The first, controlled by the Deborah number based on the Hertz contact width, determines the width of the contact, the overall pressure distribution and the energy loss. The second, controlled by the Deborah number based on the entrainment length, largely determines the thickness of the entrained film and the minimum film thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.