Multiple sclerosis (MS) is supposedly a T-cell mediated autoimmune disorder of the central nervous system. Cytokines and other molecules involved in the regulation of apoptosis are thought to be of importance for the pathogenesis of MS. In this study, the mRNA levels of interleukin 18 (IL-18), IL-1beta and their processing enzyme caspase-1 were quantified by a competitive RT-PCR method in unstimulated peripheral blood mononuclear cells (PBMCs) in MS patients never treated with disease modifying drugs. Western blot was used to support the expression pattern at the protein level. We found that the expression of caspase-1 and IL-18 was significantly increased in MS patients compared with healthy controls. Analysis of clinical subgroups revealed that caspase-1 was increased in all subgroups, whereas IL-18 was upregulated in chronic progression (P=0.001) and relapsing MS patients in remission (P=0.002) but not significantly during relapses (P=0.12). mRNA levels of IL-1beta were not significantly altered in MS except for a possible decrease in chronic progression (P=0.03). An increased IL-18 expression, potentially augmented at the mature protein level, may indicate a pathway worth considering in future therapeutic strategies in MS.
Rationale:
PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1α) represents an attractive target interfering bioenergetics and mitochondrial homeostasis, yet multiple attempts have failed to upregulate PGC1α expression as a therapy, for instance, causing cardiomyopathy.
Objective:
To determine whether a fine-tuning of PGC1α expression is essential for cardiac homeostasis in a context-dependent manner.
Methods and Results:
Moderate cardiac-specific PGC1α overexpression through a ROSA26 locus knock-in strategy was utilized in WT (wild type) mice and in G3Terc
−/−
(third generation of telomerase deficient; hereafter as G3) mouse model, respectively. Ultrastructure, mitochondrial stress, echocardiographic, and a variety of biological approaches were applied to assess mitochondrial physiology and cardiac function. While WT mice showed a relatively consistent PGC1α expression from 3 to 12 months old, age-matched G3 mice exhibited declined PGC1α expression and compromised mitochondrial function. Cardiac-specific overexpression of PGC1α (PGC1α
OE
) promoted mitochondrial and cardiac function in 3-month-old WT mice but accelerated cardiac aging and significantly shortened life span in 12-month-old WT mice because of increased mitochondrial damage and reactive oxygen species insult. In contrast, cardiac-specific PGC1α knock in in G3 (G3 PGC1α
OE
) mice restored mitochondrial homeostasis and attenuated senescence-associated secretory phenotypes, thereby preserving cardiac performance with age and extending health span. Mechanistically, age-dependent defect in mitophagy is associated with accumulation of damaged mitochondria that leads to cardiac impairment and premature death in 12-month-old WT PGC1α
OE
mice. In the context of telomere dysfunction, PGC1α induction replenished energy supply through restoring the compromised mitochondrial biogenesis and thus is beneficial to old G3 heart.
Conclusions:
Fine-tuning the expression of PGC1α is crucial for the cardiac homeostasis because the balance between mitochondrial biogenesis and clearance is vital for regulating mitochondrial function and homeostasis. These results reinforce the importance of carefully evaluating the PGC1α-boosting strategies in a context-dependent manner to facilitate clinical translation of novel cardioprotective therapies.
Akt has been implicated in pro-survival and anti-apoptotic activities in many cell types, including dorsal root ganglion (DRG) and spinal motor neurons. In this immunohistochemical study we have monitored phosphorylated Akt (p-Akt) levels in adult mouse DRGs and spinal cord following unilateral peripheral sciatic nerve transection (axotomy) or carrageenan-induced inflammation. In control animals around half of the lumbar DRG neuron profiles (NPs), mainly small and medium-sized ones, were p-Akt immunoreactive (IR), and of these around 50% expressed calcitonin gene-related peptide and/or isolectin IB4. Two weeks after axotomy, the number of p-Akt-positive NPs was only slightly reduced, but p-Akt immunofluorescence intensity was strongly increased. One third of the ipsilateral p-Akt-IR NPs was galanin positive, but virtually without colocalization with neuropeptide Y. Furthermore, p-Akt-like immunoreactivity significantly increased in intensity in the ipsilateral spinal dorsal horn after axotomy and expanded into deeper layers. Carrageenan-induced peripheral inflammation increased the number of p-Akt-IR NPs after 1 h. Both axotomy and inflammation caused a clear increase in nuclear p-Akt-like immunoreactivity in DRG neurons. Our findings support a role for Akt as a key signaling molecule in sensory neurons and spinal cord after peripheral injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.