-This paper provides a comprehensive study of interleave-division multiple-access (IDMA) systems. The IDMA receiver principles for different modulation and channel conditions are outlined. A semi-analytical technique is developed based on the density evolution technique to estimate the bit-error-rate (BER) of the system. It provides a fast and relatively accurate method to predict the performance of the IDMA scheme. Simulation examples are provided to demonstrate the advantages of the IDMA scheme in terms of both bandwidth and power efficiencies. For example, with simple convolutional/repetition codes, overall throughputs of 3 bits/chip with one receive antenna and 6 bits/chip with two receive antennas are observed for systems with as many as about 100 users.
An efficient nonlinear just-in-time learning (JITL) soft sensor method for online modeling of batch processes with uneven operating durations is proposed. A recursive least-squares support vector regression (RLSSVR) approach is combined with the JITL manner to model the nonlinearity of batch processes. The similarity between the query sample and the most relevant samples, including the weight of similarity and the size of the relevant set, can be chosen using a presented cumulative similarity factor. Then, the kernel parameters of the developed JITL-RLSSVR model structure can be determined adaptively using an efficient cross-validation strategy with low computational load. The soft sensor implement algorithm for batch processes is also developed. Both the batch-to-batch similarity and variation characteristics are taken into consideration to make the modeling procedure more practical. The superiority of the proposed soft sensor approach is demonstrated by predicting the concentrations of the active biomass and recombinant protein in the streptokinase fed-batch fermentation process, compared with other existing JITL-based and global soft sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.