Monitoring brassinosteroids (BRs) has been of major interest of researchers as these substances play a crucial role in a variety of phytological processes in plants. However, the determination of endogenous BRs in plant tissue is still a challenging task due to their low abundance and the complex matrix of plant tissues. In this study, a single step strategy by combining tip extraction and in situ derivatization was proposed for BR analysis. In the proposed strategy, a mixed mode sorbent (C8-SO3H) in tip was modified with 4-phenylaminomethyl-benzeneboric acid (4-PAMBA) through cation exchange and hydrophobic interactions, and then used as a boronate affinity media to selectively capture and purify BRs from plant extract through the reaction of boric acid groups of 4-PAMBA and cis-diol on BRs. The BRs-4-PAMBA derivatives formed were easily eluted from the C8-SO3H tip by nullifying the ion exchange and hydrophobic interactions using ammonia acetonitrile, followed by LC-MS/MS analysis. BR standards, isotopically labeled with d5-4-phenylaminomethyl-benzeneboric acid (4-PAMBA-d5) were introduced to improve the assay precision of LC-MS/MS. Under the optimized conditions, the overall process could be completed within 1 h, which is greatly improved in speed compared with previously reported protocols. In addition, the detection sensitivities of labeled BRs were improved by over 2000-fold compared with unlabeled BRs, thus the consumption of plant materials was reduced to 50 mg. Finally, the proposed method was applied for the investigation of BRs response in rice toward Cd stress.
We developed a strategy for non-targeted profiling of aldehyde-containing compounds by stable isotope labelling in combination with liquid chromatography-double neutral loss scan-mass spectrometry (SIL-LC-DNLS-MS) analysis. A pair of stable isotope labelling reagents (4-(2-(trimethylammonio)ethoxy)benzenaminium halide, 4-APC and d4-4-(2-(trimethylammonio)ethoxy)benzenaminium halide, 4-APC-d4) that can selectively label aldehyde-containing compounds were synthesized. The 4-APC and 4-APC-d4 labelled compounds were capable of generating two characteristic neutral fragments of 87 Da and 91 Da, respectively, under collision induced dissociation (CID). Therefore, double neutral loss scans were carried out simultaneously to record the signals of the potential aldehyde-containing compounds. In this respect, the aldehyde-containing compounds from two samples labelled with 4-APC and 4-APC-d4 were ionized at the same time but recorded separately by mass spectrometry. The peak pairs with characteristic mass differences (n × 4 Da) can be readily extracted from the DNLS spectra and assigned as potential aldehyde-containing candidates, which facilitates the identification of the target aldehydes. 4-APC and 4-APC-d4 labelling also dramatically increased detection sensitivities of the derivatives. Using the SIL-LC-DNLS-MS strategy, we successfully profiled the aldehyde-containing compounds in human urine and white wine. Our results showed that 16 and 19 potential aldehyde-containing compounds were discovered in human urine and white wine, respectively. In addition, 5 and 4 aldehyde-containing compounds in human urine and white wine were further identified by comparison with aldehyde standards. Altogether, SIL-LC-DNLS-MS demonstrated to be a promising approach in the identification and relative quantification of aldehyde-containing compounds from complex samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.