It is unclear how physical activity stimulates new bone synthesis. We explored whether irisin, a newly discovered myokine released upon physical activity, displays anabolic actions on the skeleton. Young male mice were injected with vehicle or recombinant irisin (r-irisin) at a low cumulative weekly dose of 100 µg kg(-1). We observed significant increases in cortical bone mass and strength, notably in cortical tissue mineral density, periosteal circumference, polar moment of inertia, and bending strength. This anabolic action was mediated primarily through the stimulation of bone formation, but with parallel notable reductions in osteoclast numbers. The trabecular compartment of the same bones was spared, as were vertebrae from the same mice. Higher irisin doses (3,500 µg kg(-1) per week) cause browning of adipose tissue; this was not seen with low-dose r-irisin. Expectedly, low-dose r-irisin modulated the skeletal genes, Opn and Sost, but not Ucp1 or Pparγ expression in white adipose tissue. In bone marrow stromal cell cultures, r-irisin rapidly phosphorylated Erk, and up-regulated Atf4, Runx2, Osx, Lrp5, β-catenin, Alp, and Col1a1; this is consistent with a direct receptor-mediated action to stimulate osteogenesis. We also noted that, although the irisin precursor Fndc5 was expressed abundantly in skeletal muscle, other sites, such as bone and brain, also expressed Fndc5, albeit at low levels. Furthermore, muscle fibers from r-irisin-injected mice displayed enhanced Fndc5 positivity, and irisin induced Fdnc5 mRNA expression in cultured myoblasts. Our data therefore highlight a previously unknown action of the myokine irisin, which may be the molecular entity responsible for muscle-bone connectivity
Menopause is associated with bone loss and enhanced visceral adiposity. We have shown previously that a polyclonal antibody (Ab) to the β-subunit of the pituitary hormone Fsh increases bone mass in mice. Here, we report that this Ab sharply reduces adipose tissue in wild type mice, phenocopying genetic Fshr haploinsufficiency. The Ab also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue, and enhances thermogenesis. These actions result from the specific binding of Ab to Fshβ to block its action. Our studies uncover novel opportunities for co-treating obesity and osteoporosis.
Bruton agammaglobulinemia tyrosine kinase (BTK), a cytoplasmic protein tyrosine kinase, is a component of the B-cell receptor signaling pathway. Ibrutinib, a BTK inhibitor, has demonstrated a significant clinical activity against chronic lymphocytic leukemia (CLL) in early clinical trials. Understanding the molecular mechanisms of action would shed light on CLL pathophysiology and provide additional opportunities for the development of new therapies. In this study, we have chosen an in vivo approach by employing an ongoing phase 1b trial of ibrutinib. We prospectively collected and analyzed serial samples from the CLL patients before and after the initiation of ibrutinib. We found that the blockage of cell proliferation was one of the primary effects of ibrutinib against leukemic CLL cells in vivo. Using a co-culture system that induces CLL proliferation in vitro, analysis of several parameters, including Ki-67 expression and bromodeoxyuridine (BrdU) incorporation, revealed that the proliferation of CLL cells was directly inhibited by ibrutinib. Furthermore, activities of BTK and phospholipase Cγ2 as well as downstream signaling molecules, AKT and ERK, were all coordinately downregulated over time in ibrutinib-treated patients. Our findings suggest that the cell proliferation is one of the essential properties of CLL. Blocking cell proliferation via inhibition of BTK-mediated signaling may contribute to clinical responses in ibrutinib-treated patients.
Chemoresistance presents a major obstacle to the efficacy of chemotherapeutic treatment of cancers. Using chemotherapeutic drugs to select drug-resistant cancer cells in hepatocellular carcinoma (HCC) and several other cancer cell lines, we demonstrate that chemoresistant cells displayed cancer stem cell features, such as increased self-renewal ability, cell motility, multiple drug resistance, and tumorigenicity. Octamer 4 (Oct4) messenger RNA (mRNA) levels were dramatically increased in chemoresistant cancer cells due to DNA demethylation regulation of Oct4. By functional study, Oct4 overexpression enhanced whereas Oct4 knockdown reduced liver cancer cell resistance to chemotherapeutic drugs in vitro and in xenograft tumors. It is known that the Oct4-TCL1-AKT pathway acts on embryonic stem cells and cancer stem cells in cell proliferation through inhibition of apoptosis. We further demonstrate that Oct4 overexpression induced activation of TCL1, AKT, and ABCG2 to mediate chemoresistance, which can be overcome by addition of the PI3K/AKT inhibitor; therefore, a direct pathway of Oct4-TCL1-AKT-ABCG2 or a combination of Oct4-TCL1-AKT with the AKT-ABCG2 pathway could be a potential new mechanism involved in liver cancer cell chemoresistance. Moreover, the clinical significance of the Oct4-AKT-ABCG2 pathway can be demonstrated in HCC patients, with a strong correlation of expression patterns in human HCC tumors. The role of the Oct4-AKT-ABCG2 axis in cancer cell chemoresistant machinery suggests that AKT pathway inhibition (PI3K inhibitors) not only inhibits cancer cell proliferation, but may also enhance chemosensitivity by target potential chemoresistant cells. Conclusion: Oct4, a transcriptional factor of pluripotent cells, can mediate chemoresistance through a potential Oct4-AKT-ABCG2 pathway. (HEPATOLOGY 2010;52:528-539)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.