BACKGROUND Enhanced proliferation and survival of eutopic endometrial cells from patients with endometriosis compared with healthy women is associated with abnormal activation of extra-cellular signal-regulated kinases 1 and 2 (ERK1/2). Given the role of Ras/Raf/mitogen-activated protein kinase (MAPK) and RhoA/ROCKII signalling pathways in the regulation of cell proliferation and migration, we analysed their possible roles in endometriosis. METHODS Primary eutopic endometrial stromal cells of patients with endometriosis (Eu-hESC, n= 16) and endometriosis-free controls (Co-hESC, n= 14) were harvested and subjected to proliferation and migration assays as well as kinase activity assays and immunoblot analysis of proteins from the Ras/Raf/MAPK and RhoA/ROCKII signalling pathways. Effects of ROCKII (Y-27632) and MAPK (U0126) inhibitors or siRNA knockdown of ROCKII, Raf-1 and B-Raf were analysed. RESULTS The proliferation rate of Eu-hESC was 54% higher than Co-hESC. Eu-hESC also displayed a 75% higher migration rate than Co-hESC. Eu-hESC displayed higher levels of ERK phosphorylation (83%) and p27 expression (61%) and lower levels of Raf-1 protein (47%) compared with controls. In addition to an inhibitory effect on cell proliferation, ROCKII knockdown led to significant down-regulation of cyclinD1 and p27 but did not affect ERK phosphorylation. Down-regulation of Raf-1 by siRNA was dispensable for cell proliferation control but led to an increase in ROCKII activity and a decrease in cell migration. B-Raf was shown to act as a regulator of hESC proliferation by modulating cellular ERK1/2 activity and cyclinD1 levels. Eu-hESC displayed 2.4-fold higher B-Raf activity compared with Co-hESC and therefore exhibit abnormally activated Ras/Raf/MAPK signalling. CONCLUSIONS We show that the same molecular mechanisms operate in Co- and Eu-hESC. The differences in cell proliferation and migration between both cell types are likely due to increased activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in cells from endometriosis patients.
Several studies have shown that aging is associated with quantitative and qualitative alterations of the stem and progenitor cell compartment. The current results indicate that there is a significant age-associated decline in the proliferative capacity of rat myeloid progenitor cells. In contrast, no difference was found in the frequency of myeloid progenitor cells in the bone marrow of young versus old rats. Furthermore, a significant shift towards higher proliferative capacity of myeloid progenitors was observed after lifelong voluntary exercise. These data emphasize that aging is accompanied by a loss of proliferative capacity and that voluntary exercise could retard this process.
Endometriosis is a disease characterized by the localization of endometrial tissue outside the uterine cavity. The differences observed in migration of human endometrial stromal cells (hESC) obtained from patients with endometriosis versus healthy controls were proposed to correlate with the abnormal activation of Raf-1/ROCKII signalling pathway. To evaluate the mechanism by which Raf-1 regulates cytoskeleton reorganization and motility, we used primary eutopic (Eu-, n = 16) and ectopic (Ec-, n = 8; isolated from ovarian cysts) hESC of patients with endometriosis and endometriosis-free controls (Co-hESC, n = 14). Raf-1 siRNA knockdown in Co- and Eu-hESC resulted in contraction and decreased migration versus siRNA controls. This phenotype was reversed following the re-expression of Raf-1 in these cells. Lowest Raf-1 levels in Ec-hESC were associated with hyperactivated ROCKII and ezrin/radixin/moesin (E/R/M), impaired migration and a contracted phenotype similar to Raf-1 knockdown in Co- and Eu-hESC. We further show that the mechanism by which Raf-1 mediates migration in hESC includes direct myosin light chain phosphatase (MYPT1) phosphorylation and regulation of the levels of E/R/M, paxillin, MYPT1 and myosin light chain (MLC) phosphorylation indirectly via the hyperactivation of ROCKII kinase. Furthermore, we suggest that in contrast to Co-and Eu-hESC, where the cellular Raf-1 levels regulate the rate of migration, the low cellular Raf-1 content in Ec-hESC, might ensure their restricted migration by preserving the contracted cellular phenotype. In conclusion, our findings suggest that cellular levels of Raf-1 adjust the threshold of hESC migration in endometriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.