The East China Sea (ECS) and the Southern Yellow Sea (SYS) ecosystem is undergoing dramatic changes, but the spatiotemporal patterns and forcing mechanisms of phytoplankton variations remain understudied. Phytoplankton lipid biomarkers are useful proxies for productivity and community structure changes, and they were measured in suspended particles of more than 81 sites from spring and summer of 2011 in the ECS and SYS. In spring, the concentrations of brassicasterol (4.7-127 ng L À1 ) and dinosterol (0.7-37 ng L À1 ) were markedly higher in the northern and central SYS, while C 37 alkenones (0-15 ng L À1 ) were detected at only seven sites in the ECS. In summer, brassicasterol (25.3-1178 ng L À1 ) and dinosterol (0-125 ng L À1 ) showed high values off the Changjiang River Estuary (CRE), while C 37 alkenones (0-410 ng L À1 ) had high values in the northwest and central SYS. The mean concentrations of the three lipid biomarkers in summer were 3 to 61 times higher than those in spring. Spatiotemporal patterns of biomarkers reveal higher ratios of diatom/dinoflagellate and diatom/haptophyte in higher productivity areas, off the CRE in summer and the northern and central SYS in spring. This study validates the applicability of brassicasterol, dinosterol, and alkenones as proxies of productivity and community structure of the three phytoplankton taxa: diatoms, dinoflagellates, and haptophytes. The results indicate that nutrients (in summer) and turbidity-induced photosynthetic available radiation (in spring) play important roles in regulating spatiotemporal variations of phytoplankton in the ECS and SYS.
Background: Numerous practitioners of both conventional and complementary and alternative medicine throughout North America and Europe claim that chelation therapy with EDTA is an effective means to both control and treat cardiovascular disease. These claims are controversial, and several randomized controlled trials have been completed dealing with this topic. To address this issue we conducted a systematic review to evaluate the best available evidence for the use of EDTA chelation therapy in the treatment of cardiovascular disease.
The entorhino-hippocampal pathway is the major excitatory input from neurons of the entorhinal cortex on both ipsilateral and contralateral hippocampus/dentate gyrus. This fiber tract consists of the alvear path, the perforant path and a crossed commissural projection. In this study, the histogenesis and development of the various subsets of the entorhino-hippocampal projection have been investigated. DiI, DiO, Fast Blue tracing and calretinin immunocytochemistry as well as were carried out with pre and postnatal rats at different developmental stages. The alvear path and the commissural pathway start to develop as early as embryonic day E16, while the first perforant afferents reach the stratum lacunosum-moleculare of the hippocampus at E17 and at outer molecular layer of the denate gyrus at postnatal day 2. Retrograde tracing with DiI identifies entorhinal neurons in layer II-IV as the developmental origin of the entorhino-hippocampal pathway. Furthermore, calretinin immunocytochemistry revealed transitory Cajal-Retzius cells in the stratum lacunosum-moleculare of the hippocampus from E16. DiI labeling of entorhinal cortex fibers and combined calretinin-immunocytochemistry reveal a close relationship between Cajal-Retzius cells and entorhinal afferents. This temporal and spatial relationship suggests that Cajal-Retzius cell serves as a guiding cue for entorhinal afferents at early cortical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.