BackgroundThe aim of this study was to identify a primate model of degenerative knee osteoarthritis (KOA) that may be more relevant for research studies on degenerative KOA in humans.Material/MethodsSixteen specific-pathogen-free (SPF) male cynomolgus monkeys (Macaca fascicularis) were divided into group A (n=8), an old group (22.0–25.3 years of age), and group B (n=8), a young group (3.0–5.2 years of age). For each primate, the behavior was observed, knee circumference was measured, knee joint X-rays were performed, and peripheral blood white blood cell (WBC) counts were measured, and the Kellgren and Lawrence (K-L) system was used for the classification of osteoarthritis. An enzyme-linked immunoassay (ELISA) was performed on knee joint fluid to measure levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)13. Changes in articular cartilage were evaluated using the Brittberg score and the Mankin histopathology grading score, respectively. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to measure the expression of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and the findings in the two groups of primates were compared.ResultsSeven old aged primates in group A were compared with group B, and showed significant differences in WBC count, synovial fluid IL-1β, TGF-β1, and MMP13 levels, expression levels of the NOTCH3, JAG1, and ACAN genes in knee cartilage specimens, and in the Brittberg and Mankin scores (all, P<0.05).ConclusionsCynomolgus monkeys (Macaca fascicularis) might be a model for age-related degenerative KOA.
Background
Radiation-induced lung injury (RILI) is a critical factor that leads to pulmonary fibrosis and other diseases. LncRNAs and miRNAs contribute to normal tissue damage caused by ionizing radiation. Troxerutin offers protection against radiation; however, its underlying mechanism remains largely undetermined.
Methods
We established a model of RILI in mice pretreated with troxerutin. The lung tissue was extracted for RNA sequencing, and an RNA library was constructed. Next, we estimated the target miRNAs of differentially expressed (DE) lncRNAs, and the target mRNAs of DE miRNAs. Then, functional annotations of these target mRNAs were performed using GO and KEGG.
Results
Compared to the control group, 150 lncRNA, 43 miRNA, and 184 mRNA were significantly up-regulated, whereas, 189 lncRNA, 15 miRNA, and 146 mRNA were markedly down-regulated following troxerutin pretreatment. Our results revealed that the Wnt, cAMP, and tumor-related signaling pathways played an essential role in RILI prevention via troxerutin using lncRNA-miRNA-mRNA network.
Conclusion
These evidences revealed that the abnormal regulation of RNA potentially leads to pulmonary fibrosis. Therefore, targeting lncRNA and miRNA, along with a closer examination of competitive endogenous RNA (ceRNA) networks are of great significance to the identification of troxerutin targets that can protect against RILI.
Background and objectives Chondrogenesis of bone marrow mesenchymal stem cells (BMSCs) exerts great function during the pathogenesis of osteoarthritis (OA). Studies have reported the association of plexin B1 (PLXNB1) with OA pathogenesis. In this study, the upstream mechanism and function of PLXNB1 in this disease were explored. Methods Flow cytometry was applied to test BMSC characterization. Chondrogenic differentiation of BMSCs was evaluated by Alcian blue staining. The expression of PLXNB1, miR-362-5p, miR-501-5p, miR-1827, miR-500-5p was measured using RT-qPCR analysis. The protein levels of PLXNB1, Aggrecan, and Silent information regulator factor 2-related enzyme 1 (SIRT1) were determined by western blotting. Binding relationship between miR-362-5p and PLXNB1 was confirmed using bioinformatics analysis and luciferase reporter assay. The in vivo model of OA was established in Sprague-Dawley rats which received medial meniscus instability surgery. For histopathological examination, cartilage tissues in the knee joint of rats were stained with hematoxylin and eosin. Micro-CT analysis was employed to observe the changes of morphometric indices including average trabecular separation, average trabecular thickness, and bone volume fraction. Results BMSCs were identified to possess the characteristics of mesenchymal stem cells. PLXNB1 was observed to be highly expressed during chondrogenic differentiation of BMSCs and PLXNB1 overexpression promoted BMSC chondrogenic differentiation. Mechanically, PLXNB1 was targeted by miR-362-5p. In rescue assays, miR-362-5p reversed the effects of PLXNB1 on chondrogenic differentiation of BMSCs. In the in vivo experiments, upregulated PLXNB1 expression alleviated joint injury of OA rats. Additionally, overexpressed miR-362-5p and downregulated PLXNB1 expression levels were detected in OA rats. Conclusion MiR-362-5p promotes OA progression by suppressing PLXNB1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.