Opioid receptors regulate neuronal activity by both pre- and postsynaptic mechanisms. We recently reported that the cloned delta- opioid receptor (DOR1) is primarily targeted to axons, suggesting a presynaptic role. In the present study we have studied the distribution and targeting of another opioid receptor, the mu-opioid receptor (MOR1), by raising anti-peptide antisera to the C-terminal peptide of MOR1. The specificity of the antisera was determined by analysis of transfected cells, Western blots, and immunoisolation studies. Immunohistochemistry showed that MOR1 immunoreactivity was enriched in many brain areas including cerebral cortex, striatum, hippocampus, locus coeruleus, and the superficial laminae of the dorsal horn. Moreover, MOR1-expressing neurons seem to target this receptor preferentially to their somatodendritic domain as determined by double- labeling experiments with MAP2. However, discrete populations of neurons target MOR1 to their axons, including some primary afferent neurons that express DOR1. In many regions enkephalin-containing axons were complementary to MOR1, suggesting by their proximity that enkephalins may be physiologically relevant ligands for this receptor. Thus, these results provide a morphological basis for understanding pre- and postsynaptic functions mediated by MOR1.
We have recently developed antisera which recognize epitopes of the cloned delta-opioid receptor (DOR; Dado et al., 1993). In the present report we have further characterized these antisera, and raised additional antisera in rats. We used these antisera to determine the distribution of DOR-like immunoreactivity (-Ll) in rat spinal cord and brainstem in relation to serotoninergic, noradrenergic, and enkephalinergic neurons. We found DOR-Ll in fibers and varicosities distributed throughout the spinal cord gray matter, with highest densities in the superficial dorsal horn, in autonomic regions, around the central canal as well as in the ventral horn motor nuclei. In the brainstem a dense innervation of DOR-immunoreactive (-IR) fibers was found in several nuclei such as spinal trigeminal nuclei, midline raphe nuclei, parabrachial nuclei, periaqueductal gray matter (PAG), interpeduncular nucleus, ans substantia nigra. A group of DOR-positive cells was seen in the laterodorsal tegmental nucleus. In addition, a few DOR-IR cell bodies were demonstrated in the parabrachial nuclei, interpeduncular nucleus, PAG, and superior and inferior colliculi as well as around the central canal in the spinal cord. All DOR-positive cells showed a punctuate staining pattern within the cytoplasm of the cell body and in primary dendrites. No plasma membrane staining of cells or dendrites could be demonstrated using the DOR antisera. Double-labeling experiments for DOR and 5-hydroxytryptamine (5HT, serotonin) revealed that some 5HT-IR neurons in the raphe complex were surrounded by DOR-IR fibers. In the spinal cord a high degree of coexistence was found between DOR and 5HT in nerve fibers and varicosities in the neuropil around the motoneurons and in lamina V of the dorsal horn. In autonomic regions of the spinal cord, a low degree of colocalization was seen between DOR and 5HT; in the superficial dorsal horn no coexistence was found. Tyrosine hydroxylase (TH)-positive neurons in the brainstem (in the A5 area, locus coeruleus, and A7 area) were apposed by DOR-positive fibers. However, no coexistence could be seen between DOR and TH in any part of the spinal cord. A close relation, but no coexistence, was observed between DOR- and enkephalin (ENK)-IR fibers in the spinal cord ventral horn; in the intermediolateral nucleus a low degree of colocalization was observed. Thus, a delta-opioid receptor may affect the activity of descending serotoninergic and noradrenergic neurons by means of modulating the release of neurotransmitters from afferents to these neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Three types of opioid receptors exist in the animals, each is encoded by a single gene, i.e., the mu opioid receptor gene, the delta opioid receptor gene, and the kappa opioid receptor gene. However, each opioid receptor gene produces multiple mRNA variants as a result of alternative promoter usages, splicing and/or polyadenylation. As such, a large reservoir of regulatory events has evolved for the control of the production of mRNA variants or differentially modified proteins from each opioid receptor gene. This review focuses on post-transcriptional events for the regulation of opioid receptor expression or activities, including alternative splicing, mRNA stability, translation, RNA polyadenylation, RNA transport, and covalent modification of the receptors. Variation at the mRNA level contributes, primarily, to the control of spatial and temporal expression of these receptors in different parts of neurons; whereas modification at the receptors is the key for controlling the duration and amplitude of signals generated from these receptors.
Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.
Abstract:The present study demonstrates a conditional, agonist-dependent phosphorylation of the~t-opioidreceptor (MOR-1) by cyclic AMP-dependent protein kinase (PKA) in membrane preparations of MOR-1 -transfected neuroblastoma Neuro2A cells. Opioid agonist-dependent phosphorylation occurs in a time-and concentration-dependent manner (EC 50~-~40 nM) and can be abolished by the receptor antagonist naloxone. Stoichiometric analysis indicates incorporation of a maximum of 6 mol of phosphate/mol of receptor in the presence of 1 1eM morphine and 6 nM PKA. Although morphine and related alkaloids as well as some peptide agonists (PLO17 and /3-endorphin) stimulated phosphorylation of MOR-1 by PKA, the potent ft-opioid-selective peptide [D-Ala 2,N-MePhe4, Gly-ol5]-enkephalin (DAMGO) or other enkephalin analogues such as ED-Ala2] -Met5-enkephalinamide (DALA), -enkephalin (DADLE), and Met5-enkephaIm had no effect. The lack of the effect of DAMGO on MOR-1 phosphorylation state was evident also after chronic pretreatment. These results suggest the existence of different agonist-dependent conformations of MOR-1. Furthermore, phosphorylation may be a useful parameter with which to identify different agonist-receptorconformations. Key Words:~i-Opioidreceptor-Morphine-ED-Ala2, N-MePhe4 ,Gly-ol 5] -enkephalin-Cyclic AMP-dependent protein kinase-Opioid-Phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.