Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner
AbstractBackground: Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell deathrelated gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.