Bonding interactions between the iron and the porphyrin macrocycle of five- and six-coordinate high-spin iron(III)-porphyrin complexes are analyzed within the framework of approximate density functional theory with the use of the quantitative energy decomposition scheme in combination with removal of the vacant pi orbitals of the porphyrin from the valence space. Although the relative extent of the iron-porphyrin interactions can be evaluated qualitatively through the spin population and orbital contribution analyses, the bond strengths corresponding to different symmetry representations can be only approximated quantitatively by the orbital interaction energies. In contrast to previous suggestions, there are only limited Fe --> P pi back-bonding interactions in high-spin iron(III)-porphyrin complexes. It is the symmetry-allowed bonding interaction between d(z)2 and a(2u) orbitals that is responsible for the positive pi spin densities at the meso-carbons of five-coordinate iron(III)-porphyrin complexes. Both five- and six-coordinate complexes show significant P --> Fe pi donation, which is further enhanced by the movement of the metal toward the in-plane position for six-coordinate complexes. These bonding characteristics correlate very well with the NMR data reported experimentally. The extraordinary bonding interaction between d(z)2 and a(2u) orbitals in five-coordinate iron(III)-porphyrin complexes offers a novel symmetry-controlled mechanism for spin transfer between the axial ligand sigma system and the porphyrin pi system and may be critical to the electron transfer pathways mediated by hemoproteins.
Policies regarding alcohol use have become more flexible particularly toward patients with AAH. Marijuana use is also more accepted. Although policies regarding alcohol and marijuana have changed significantly in the last decade, they remain highly variable among programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.