Graft-versus-host disease (GVHD) in the gastrointestinal (GI) tract is the principal determinant of lethality following allogeneic bone marrow transplantation (BMT). Here, we examined the mechanisms that initiate GVHD, including the relevant antigen-presenting cells. MHC class II was expressed on intestinal epithelial cells (IECs) within the ileum at steady state but was absent from the IECs of germ-free mice. IEC-specific deletion of MHC class II prevented the initiation of lethal GVHD in the GI tract. MHC class II expression on IECs was absent from mice deficient in the TLR adaptors MyD88 and TRIF and required IFNg secretion by lamina propria lymphocytes. IFNg responses are characteristically driven by IL-12 secretion from myeloid cells. Antibiotic-mediated depletion of the microbiota inhibited IL-12/23p40 production by ileal macrophages. IL-12/23p40 neutralization prevented MHC class II upregulation on IECs and initiation of lethal GVHD in the GI tract. Thus, MHC class II expression by IECs in the ileum initiates lethal GVHD, and blockade of IL-12/23p40 may represent a readily translatable therapeutic strategy.
Type-1 regulatory T (TR1) cells are Foxp3-negative IL-10-producing CD4+ T cells with potent immune suppressive properties but their requirements for lineage development have remained elusive. Here we show that TR1 cells constitute the most abundant regulatory population after allogeneic bone marrow transplantation (BMT), express the transcription factor Eomesodermin (Eomes) and are critical for the prevention of graft-versus-host disease (GVHD). We demonstrate that Eomes is required for TR1 cell differentiation during which it acts in concert with the transcription factor B-lymphocyte-induced maturation protein-1 (Blimp-1) by transcriptionally activating IL-10 expression and repressing differentiation into other Th lineages. We further show that Eomes induction in TR1 cells requires T-bet and donor macrophage-derived IL-27. We thus define the cellular and transcriptional control of TR1 cell differentiation during bone marrow transplantation, opening new avenues to therapeutic manipulation.
Autologous stem cell transplantation (SCT) remains a standard of care for multiple myeloma (MM) patients and prolongs progression-free survival. A small cohort of patients achieve long-term control of disease, but the majority of patients ultimately relapse, and the mechanisms permitting disease progression remain unclear. In this study, we used a preclinical model of autologous SCT for myeloma where the disease either progressed (MM relapsed) or was controlled. In the bone marrow (BM), inhibitory receptor expression on CD8 T cells correlated strongly with myeloma progression after transplant. In conjunction, the costimulatory/adhesion receptor CD226 (DNAM-1) was markedly downregulated. Interestingly, DNAM-1 CD8 T cells in MM-relapsed mice had an exhausted phenotype, characterized by upregulation of multiple inhibitory receptors, including T-cell immunoglobulin and ITIM domains (TIGIT) and programmed cell death protein 1 (PD-1) with decreased T-bet and increased eomesodermin expression. Immune checkpoint blockade using monoclonal antibodies against PD-1 or TIGIT significantly prolonged myeloma control after SCT. Furthermore, CD8 T cells from MM-relapsed mice exhibited high interleukin-10 (IL-10) secretion that was associated with increased TIGIT and PD-1 expression. However, while donor-derived IL-10 inhibited myeloma control post-SCT, this was independent of IL-10 secretion by or signaling to T cells. Instead, the donor myeloid compartment, including colony-stimulating factor 1 receptor-dependent macrophages and an IL-10-secreting dendritic cell population in the BM, promoted myeloma progression. Our findings highlight PD-1 or TIGIT blockade in conjunction with SCT as a potent combination therapy in the treatment of myeloma.
and T.C.M.F. performed all of the retrovirus transductions and confocal microscopy. J.U. developed the PEPCK tetramer and provided advice on its use. N.G. and W.R.H. produced the Plasmodium peptide-MHC I tetramer and helped design the PbT-I cell-killing assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.