The lung, in order to facilitate gas exchange, represents the largest epithelial surface area of the body in contact with the external environment. As normal respiration occurs, the upper and lower airways are repeatedly exposed to a multitude of airborne particles and microorganisms. Since these agents are frequently deposited on the surface of the respiratory tract, an elaborate system of defense mechanisms is in place to maintain the sterility of the lung. Innate defenses are primarily responsible for the elimination of bacterial organisms from the alveolus. Early bacterial clearance is mediated by a dual phagocytic system involving both alveolar macrophages and polymorphonuclear leukocytes. The recruitment and activation of inflammatory cells at a site of infection involves the orchestrated expression of leukocyte and vascular adhesion molecules, as well as the establishment of chemotactic gradients via the generation of proinflammatory cytokines and chemokines. Immunologic manipulation of innate immunity may serve as an important adjuvant therapy in the treatment of both immunocompromised and immunocompetent patients with severe lung infections. As the complexities of the host-pathogen interaction are further dissected and elucidated, it is likely that the therapeutic benefits from these approaches will be realized.
Increased lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA 2 is a causative agent. Here we show that selective inhibition of Lp-PLA 2 with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA 2 activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA 2 inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke.Atherosclerosis, the most common cause of myocardial infarction, stroke and cardiovascular death, is an inflammatory-immunomodulatory disease 1,2 . A key early step in its development is the accumulation and subsequent oxidation of low-density lipoproteins COMPETING INTERESTS STATEMENTThe authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/naturemedicine/. Lp-PLA 2 , also known as platelet-activating factor acetylhydrolase or type VIIA PLA 2 , is a calcium-independent phospholipase A 2 . In humans, Lp-PLA 2 is secreted by leukocytes and is associated with circulating LDL and macrophages in atherosclerotic plaques. Although some have hypothesized that Lp-PLA 2 has a protective role in atherosclerotic lesion development 9,10 , the preponderance of recent data suggests that Lp-PLA 2 has an active role in atherosclerotic development and progression [11][12][13] . Elevated circulating Lp-PLA 2 activity predicts increased cardiovascular risk 14 . A proatherogenic role for Lp-PLA 2 has been postulated on the basis of its ability to generate two key proinflammatory mediators, lysophosphatidylcholine (LPC) and oxidized nonesterified fatty acids (oxNEFAs), through the cleavage of oxidized or polar phospholipids generated during LDL oxidation 15,16 . Evidence exists for a regulatory role of these proinflammatory lipids, particularly of LPC 12,13,17 , in promoting atherosclerotic plaque development that can ultimately lead to the formation of a necrotic core. These steps include recruitment and activation of leukocytes 12,18 , induction of apoptosis 12,19 and impaired removal of dead cells 20,21 . The demonstration that Lp-PLA 2 is highly upregulated in macrophages undergoing apoptosis within the necrotic core and fibrous cap of vulnerable and ruptured plaques, ...
Abstract-Inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes of patients and experimental animals with congestive heart failure (CHF). Here we show that iNOS expression plays a role in pressure overload-induced myocardial chamber dilation and hypertrophy. In wild-type mice, chronic transverse aortic constriction (TAC) resulted in myocardial iNOS expression, cardiac hypertrophy, ventricular dilation and dysfunction, and fibrosis, whereas iNOS-deficient mice displayed much less hypertrophy, dilation, fibrosis, and dysfunction. Consistent with these findings, TAC resulted in marked increases of myocardial atrial natriuretic peptide 4-hydroxy-2-nonenal (a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) in wild-type mice but not in iNOS-deficient mice. In response to TAC, myocardial endothelial NO synthase and iNOS was expressed as both monomer and dimer in wild-type mice, and this was associated with increased reactive oxygen species production, suggesting that iNOS monomer was a source for the increased oxidative stress. Moreover, systolic overload-induced Akt, mammalian target of rapamycin, and ribosomal protein S6 activation was significantly attenuated in iNOS-deficient mice. Furthermore, selective iNOS inhibition with 1400W (6 mg/kg per hour) significantly attenuated TAC induced myocardial hypertrophy and pulmonary congestion. These data implicate iNOS in the maladaptative response to systolic overload and suggest that selective iNOS inhibition or attenuation of iNOS monomer content might be effective for treatment of systolic overload-induced cardiac dysfunction. (Circ Res. 2007;100:1089-1098.)Key Words: superoxide anion Ⅲ peroxynitrite Ⅲ iNOS monomer Ⅲ mTOR S everal investigators have demonstrated that inducible nitric oxide synthase (iNOS) protein is expressed in cardiac myocytes and endocardial endothelium of patients and animals with ventricular hypertrophy or congestive heart failure (CHF) regardless of cause. 1-4 Thus, iNOS was coexpressed with tumor necrosis factor-␣ in cardiac myocytes from patients with dilated cardiomyopathy 2 and increased in several animal models of ventricular hypertrophy or CHF. 5 Although unregulated NO production by iNOS has been proposed to exert negative effects on cardiomyocyte function, the effect of iNOS expression on ventricular hypertrophy and CHF in the in vivo heart is controversial. Thus, Heger et al 6 reported that overexpression of iNOS in cardiac myocytes increased myocardial NOS activity and NO production but had no effect on cardiac morphology or function. In contrast, Mungrue et al 7 reported that cardiac-specific overexpression of iNOS resulted in inflammatory cell infiltrate, left ventricular (LV) hypertrophy, dilation, fibrosis, and contractile dysfunction. The level of iNOS expression in these transgenic mice would depend on the promoter activity, and the iNOSrelated phenotypes might vary depending on the level of myocardial iNOS expression. Furthermore, the effects of stress-induced iNOS expression in...
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb’s ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.