With the development of optical techniques, scanning laser vibrometers have been applied successfully in measuring particle velocities and distributions in ultrasonic fields. In this paper, to develop the optical interferometry in measuring focused fields with small amplitude, the "effective" refractive index used for plane waves and extended for spherical waves is presented, the piezo-optic effect as a function of the incident angle of the laser beam is simulated, and the ultrasonic field produced by a concave spherical transducer is calculated numerically around its focal region. To verify the feasibility of the optical method in detecting focused ultrasonic fields, a measurement system was set up that utilized both a scanning laser vibrometer and a membrane hydrophone. Measurements were made in different zones of a focusing transducer, and good results were acquired from the optical interferometry in regions where acoustic waves travel in plane form or spherical form. The data obtained from the optical method are used to reconstruct acoustic fields, and it is found that the focal plane, the maximum pressure, and the beamwidth of the transducer can be forecasted accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.