Histone deacetylases (HDACs) play important roles in transcriptional regulation and pathogenesis of cancer. Thus, HDAC inhibitors are candidate drugs for differentiation therapy of cancer. Here, we show that the well-tolerated antiepileptic drug valproic acid is a powerful HDAC inhibitor. Valproic acid relieves HDAC-dependent transcriptional repression and causes hyperacetylation of histones in cultured cells and in vivo. Valproic acid inhibits HDAC activity in vitro, most probably by binding to the catalytic center of HDACs. Most importantly, valproic acid induces differentiation of carcinoma cells, transformed hematopoietic progenitor cells and leukemic blasts from acute myeloid leukemia patients. Moreover, tumor growth and metastasis formation are signi®cantly reduced in animal experiments. Therefore, valproic acid might serve as an effective drug for cancer therapy. Keywords: cancer therapy/HDAC inhibitor/histone deacetylase/leukemia/valproic acid IntroductionLocal remodeling of chromatin and dynamic changes in the nucleosomal packaging of DNA are key steps in the regulation of gene expression, consequently affecting proper cell function, differentiation and proliferation. One of the most important mechanisms in chromatin remodeling is the post-translational modi®cation of the N-terminal tails of histones by acetylation, which apparently contributes to a`histone code' determining the activity of target genes (Strahl and Allis, 2000). Acetylation of histones and possibly other substrates is mediated by enzymes with histone acetyltransferase (HAT) activity. Conversely, acetyl groups are removed by histone deacetylases (HDACs). Both HAT and HDAC activities are recruited to target genes in complexes with sequencespeci®c transcription factors and their cofactors, e.g. corepressors such as N-CoR and SMRT, and coactivators (Chen and Evans, 1995;Ho Èrlein et al., 1995;Xu et al., 1999). Nuclear receptors were the main examples of transcription factors recruiting HAT-and HDAC-associated cofactors depending on their status of activation by an appropriate ligand (Alland et al., 1997;Heinzel et al., 1997;Nagy et al., 1997;Glass and Rosenfeld, 2000). Other transcription factors such as Mad-1, BCL-6 and ETO have also been shown to assemble HDAC-dependent transcriptional repressor complexes (Laherty et al., 1997;Dhordain et al., 1998;Gelmetti et al., 1998;Lutterbach et al., 1998;Wang et al., 1998).Inappropriate repression of genes required for cell differentiation has been linked to several forms of cancer, particularly to acute leukemia. In acute promyelocytic leukemia (APL) patients, retinoic acid receptor (RAR) fusion proteins (e.g. PML±RAR or PLZF±RAR) resulting from chromosomal translocations can interact with components of the corepressor complex (Grignani et al., 1998;Guidez et al., 1998;He et al., 1998;Lin et al., 1998). The hypothesis that corepressor-mediated aberrant repression may be causal for pathogenesis in APL is supported by the ®nding that the differentiation block in cells transformed by PLZF±RAR is overc...
In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.
Currently, COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely spread around the world; nevertheless, so far there exist no specific antiviral drugs for treatment of the disease, which poses great challenge to control and contain the virus. Here, we reported a research finding that SARS-CoV-2 invaded host cells via a novel route of CD147-spike protein (SP). SP bound to CD147, a receptor on the host cells, thereby mediating the viral invasion.Our further research confirmed this finding. First, in vitro antiviral tests indicated Meplazumab, an anti-CD147 humanized antibody, significantly inhibited the viruses from invading host cells, with an EC 50 of 24.86 μg/mL and IC 50 of 15.16 μg/mL. Second, we validated the interaction between CD147 and SP, with an affinity constant of 1.85×10 -7 M. Co-Immunoprecipitation and ELISA also confirmed the binding of the two proteins. Finally, the localization of CD147 and SP was observed in SARS-CoV-2 infected Vero E6 cells by immuno-electron microscope. Therefore, the discovery of the new route CD147-SP for SARS-CoV-2 invading host cells provides a critical target for development of specific antiviral drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.